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ScienceDirect
Although rates of diagnosing mental illness have improved over

the past few decades, many cases remain undetected.

Symptoms associated with mental illness are observable on

Twitter, Facebook, and web forums, and automated methods

are increasingly able to detect depression and other mental

illnesses. In this paper, recent studies that aimed to predict

mental illness using social media are reviewed. Mentally ill

users have been identified using screening surveys, their public

sharing of a diagnosis on Twitter, or by their membership in an

online forum, and they were distinguishable from control users

by patterns in their language and online activity. Automated

detection methods may help to identify depressed or otherwise

at-risk individuals through the large-scale passive monitoring of

social media, and in the future may complement existing

screening procedures.
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Introduction
The widespread use of social media may provide oppor-

tunities to help reduce undiagnosed mental illness. A

growing number of studies examine mental health within

social media contexts, linking social media use and behav-

ioral patterns with stress, anxiety, depression, suicidality,

and other mental illnesses. The greatest number of

studies of this kind focus on depression. Depression

continues to be under-diagnosed, with roughly half

the cases detected by primary care physicians [1] and

only 13–49% receiving minimally adequate treatment [2].
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Automated analysis of social media potentially provides

methods for early detection. If an automated process

could detect elevated depression scores in a user, that

individual could be targeted for a more thorough assess-

ment, and provided with further resources, support, and

treatment. Studies to date have either examined how the

use of social media sites correlates with mental illness in

users [3] or attempted to detect mental illness through

analysis of the content created by users. This review

focuses on the latter: studies aimed at predicting mental

illness using social media. We first consider methods used

to predict depression, and then consider four approaches

that have been used in the literature. We compare the

different approaches, provide direction for future studies,

and consider ethical issues.

Prediction methods
Automated analysis of social media is accomplished by

building predictive models, which use ‘features,’ or

variables that have been extracted from social media data.

For example, commonly used features include users’

language encoded as frequencies of each word, time of

posts, and other variables (see Figure 2). Features are

then treated as independent variables in an algorithm (e.

g. Linear Regression [4] with built in variable selection

[5], or Support Vector Machines (SVM)) [6] to predict the

dependent variable of an outcome of interest (e.g. users’

mental health). Predictive models are trained, using an

algorithm, on part of the data (the training set) and then

are evaluated on the other part (the test set) to avoid

overfitting — a process called cross-validation. The pre-

diction performances are then reported as one of several

possible metrics (see Table 1).

Assessment criteria
Several approaches have been studied for collecting social

media data with associated information about the users’

mental health. Participants are either recruited to take a

depression survey and share their Facebook or Twitter

data (section A below), or data is collected from existing

public online sources (sections B, C, and D below; see

Figure 1). These sources include searching public

Tweets for keywords to identify (and obtain all Tweets

from) users who have shared their mental health diagnosis

(section B), user language on mental illness related for-

ums (section C), or through collecting public Tweets that

mention mental illness keywords for annotation (section

D). The approaches using public data (sections B, C, D)

have the advantage that much larger samples can, in
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Table 1

Prediction performances achieved by different mental illness studies reviewed in this paper. The relevant dataset, features, and

prediction settings are provided.

AUC: Area Under the Receiver Operating Characteristic (ROC) Curve; Precision: fraction of cases ruled positive that are truly positive; Accuracy:

fraction of cases that are correctly labeled by the model; SVM: Support Vector Machines; PCA: Principal Component Analysis; RBF — Radial Basis

Function.
aPrecision with 10% False Alarms.
bWithin-sample (not cross-validated).
cUsing the Depression facet of the Neuroticism factor measured by the International Personality Item Pool (IPIP) proxy to the NEO-PI-R Personality

Inventory [38].

Studies highlighted in green report AUCs; AUCs are not base rate dependent and can be compared across studies.
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Data sources used in studies as assessment criteria to establish mental illness status. The number of studies selected for review in the present

article is provided. The most commonly used self-reported screening surveys for depression include the PHQ-9 = Patient Health Questionnaire [7],

CES-D = Centers for Epidemiological Studies Depression Scale Revised [9], BDI = Beck Depression Inventory [10].
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principle, be collected faster and more cheaply than

through the administration of surveys (see Table 1 for

sample sizes), though survey-based assessment (section

A) generally provides a higher degree of validity [7].

We first compare studies that attempt to distinguish

mentally ill users from neurotypical controls (Sections

A and B). Table 1 summarizes the methodological details

of these studies.

Prediction based on survey responses

Psychometric self-report surveys for mental illness have a

high degree of validity and reliability (e.g. see [7]). In

psychological and epidemiological research, self-report

surveys are second only to clinical interviews, which no

social media study to date has used as an outcome

measure. We discuss five studies that predict survey-

assessed depression status by collecting participants’

responses to depression surveys in conjunction with their

social media data.

The most cited study used Twitter activity to examine

network and language data preceding a recent episode of

depression [8��]. The presence of depression was estab-

lished through participants reporting the occurrence and
Figure 2

Exa mple po st:  How

1-grams: How, did,  this, happen,  to, me,  ?
2-grams: “How did”, “did th is”, “this 
happen ”,”happen  ?”...
3-grams: “How did th is”,” did th is 
happen ”, “this happen  ?”
...

LIWC (DN-grams

Catego r

Self-references (

Social wo

Emotion 

Overall  cogn itiv

Use 

Numbe r of :
- Post

the d
- Post

and 6
- Retw
- Post

Hash

N-grams meta- data

Avg. 1- gram length,  
Avg. number of 1- grams pe r post,
Total number of 1-grams per user, 
...

Examples of features included in the different feature sets referenced in Tab

Assessment by Mechanical Turk [39].

www.sciencedirect.com 
recent date of a depressive episode, combined with scores

on the Center for Epidemiologic Studies Depression

Scale Revised (CES-D [9]) and Beck’s Depression Inven-

tory (BDI [10]). This study revealed several distinctions

in posting activity by depressed users, including: diurnal

cycles, more negative emotion, less social interaction,

more self-focus, and mentioning depression-related terms

throughout the year preceding depression onset.

Reece et al. [11] predicted user depression and post-

traumatic stress-disorder (PTSD) status from text and

Twitter meta-data that preceded a reported first episode

(see Figure 2 for examples of meta-data) with relatively

high Areas under the Receiver Operating Characteristic

(ROC) curve (AUCs) of .87 (depression) and .89 (PTSD).

Data were aggregated to weeks, which somewhat out-

performed aggregation to days, and modeled as longitu-

dinal trajectories of activity patterns that differentiated

healthy from mentally ill users.

Tsugawa et al. [12] predicted depression from Twitter

data in a Japanese sample, using the CES-D as their

assessment criterion. Using tweets from the most recent

6–16 weeks preceding the administration of the CES-D

was sufficient for recognizing depression; predictions
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derived from data across a longer period were less

accurate.

While most studies have used Twitter, [13] used Face-

book status updates for the prediction. Mothers self-

reported a specific postpartum depression (PPD) episode

and completed a screening survey. A model using demo-

graphics, Facebook activity, and content of posts before

childbirth accounted for 35.5% of the (within-sample1)

variance in PPD status.

Schwartz et al. [14] used questions from a personality

survey to determine users’ continuous depression scores

across a larger sample of Facebook users (N = 28 749) than

used in other studies (which typically range in the low

hundreds). This study observed seasonal fluctuations of

depression, finding that people were more depressed

during winter months. This study also provided a shortlist

of the words, phrases and topics (clusters of semantically

coherent words) most associated with depression.

Survey responses provide the most reliable ground-truth

data for predictive models in this emerging literature.

However, the costs required for this method have moti-

vated the use of more publically accessible assessment

criteria, such as those described in the next three sections.

Prediction based on self-declared mental health status

A number of studies use publicly accessible data. ‘Self-

declared’ mental illness diagnosis on Twitter (identified

through statements such as ‘I was diagnosed with depres-

sion today’) is one such source of publicly-available data.

We review seven studies of this kind. Helping to facilitate

studies of this kind, a Computational Linguistics and

Clinical Psychology (CLPsych) workshop was started in

2014 to foster cooperation between clinical psychologists

and computer scientists. ‘Shared tasks’ were designed to

explore and compare different solutions to the same

prediction problem on the same data set.

In the 2015 CLPsych workshop, participants were asked to

predict if a user had PTSD or depression based on self-

declared diagnoses on Twitter (PTSD n = 246, depression

n = 327, with the same number of age-matched control and

gender-matched control) [15��]. Participating teams built

language topic models (e.g. an anxiety topic contained the

words: feel, worry, stress, study, time, hard) [16], sought to

identify words most associated with PTSD and depression

status [17�], considered sequences of characters as features

[15��], and applied a rule-based approach to build relative

counts of N-grams present in PTSD and depression sta-

tuses of all users [18]. The latter resulted in the highest

prediction performance. All approaches found that it was

harder to distinguish between PTSD anddepression versus

detecting the presence of either condition (compared to
1 That is, not using cross-validation.
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controls), suggesting overlap in the language associated

with both conditions.

On a shared dataset similar to the 2015 CLPsych workshop,

the prediction of anxiety was improved by taking gender

into account in addition to 10 comorbid conditions [19].

Other studies have used psychological dictionaries (Lin-

guistic Inquiry and Word Count; LIWC) [20] to character-

ize differences between mental illness conditions [21], with

some success. On the same dataset, Preotiuc-Pietro et al.
[17�] observed that estimating the age of users adequately

identified users who had self-declared a PTSD diagnosis,

and that the language predictive of depression and PTSD

had large overlap with the language predictive of personal-

ity. This suggests that users with particular personality or

demographic profiles chose to share their mental health

diagnosis on Twitter, and thus that the results of these

studies (mostly, prediction accuracies) may not generalize

to other sources of autobiographical text.

Prediction based on forum membership

Online forums and discussion websites are a second

source of publicly-available text related to mental health.

They offer a space in which users can ask for advice,

receive and provide emotional support, and generally

discuss stigmatized mental health problems openly. We

review three such studies here.

In [22�], forum (reddit) posts were used to study the

mental well-being of U.S. university students. A predic-

tion model was trained on data gathered from reddit

mental health support communities and applied to the

posts collected from 109 university subreddits to estimate

the level of distress at the universities. The proportion of

mental health posts increased over the course of the

academic year, particularly for universities with quar-

ter-based, rather than semester-based, schedules. In

[23], the language of 16 subreddits covering a range of

mental health problems was characterized using LIWC

and other markers of sentence complexity.

De Choudhury et al. [24] examined posts of a group of

reddit users who posted about mental health concerns and

then shifted to discuss suicidal ideation in the future.

Several features predicted this shift: heightened self-

focus, poor linguistic style matching with the community,

reduced social engagement, and expressions of hopeless-

ness, anxiety, impulsiveness, and loneliness.

Prediction based on annotated posts

A third source of publicly-available text involves manu-

ally examining and annotating Tweets that contain men-

tal health keywords. Annotators code social media posts

according to pre-established (a priori, theory-driven) or

bottom-up (determined from the data) classifications

[25,26]; annotations can be predicted from the language

of posts.
www.sciencedirect.com
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Most annotation studies on depression focus on identify-

ing posts in which users are discussing their own experi-

ence with depression [27]. Annotators are provided with

guidelines on how to recognize a broad range of symp-

toms of depression [28] that are derived from clinical

assessment manuals such as the DSM-5 [29], or a reduced

set of symptoms, such as depressed mood, disturbed sleep and

fatigue [30]. Annotation has also been used to differentiate

between mentions of mental illness for the purpose of

stigmatization or insult as opposed to voicing support or

sharing useful information with those suffering from a

mental illness [25]. In general, annotations of posts are a

complementary (but labor-intensive) method that can

reveal life circumstances associated with mental illness

(e.g. occupational and educational problems, or the

weather [28]) not captured by traditional depression

diagnostic criteria [29].

Comparison of studies across data sources
Our review has described four sources of data used to

study and detect depression through social media. Here

we compare these sources.

Ease of collection & sample biases

While validated and reliable screening surveys (section A)

are the closest to clinical practice, they are costly to

administer at large scale and are often completed by

self-selecting crowdworkers (e.g. on MTurk) which intro-

duces a variety of sampling biases [31]. The approaches

using publicly accessible data (section B, C and D) have

larger samples, but incur additional sample biases by

relying on users to share their diagnosis publicly (e.g.

see [17�]) or join a forum, and it is unlikely that users

unaware of their diagnosis would be captured.

Prediction performances

The lower the base rate of mentally ill users in a study

sample, the harder the prediction task. While U.S. preva-

lence rates are below 10% [8��], many studies opt for a

more equal class balance (closer to base rates of 50%).

Performance metrics like precision and accuracy depend

on base rates; AUCs do not and are thus more comparable

across studies. AUCs reported in the studies reviewed

above (sections A and B) range from moderate (.70) to

high (.91; see Table 1).

How do these AUCs compare with clinical baselines?

Using clinical (as opposed to self-selected online) samples

and gold-standard structured clinical interviews as the

criterion, Mitchell et al. [32] estimated the ability of

primary care physicians to detect depression as meta-

analytic Bayesian case-finding AUCs for different coun-

tries, which range from AUC = .62 in Australia and .65 in

the U.S. to AUC = .74 in the Netherlands. These AUCs

are matched or exceeded by the AUCs reported in the

studies reviewed above (see Table 1). On the other hand,

screening inventories (such as the Patient Health
www.sciencedirect.com 
Questionnaire (PHQ) [7] and Hospital Anxiety and

Depression Scale (HADS [33])) obtain high AUCs of

around .90 against structured clinical interviews (e.g.

[34]). This suggests that social media-based screening

may reach prediction performance somewhere between

unaided clinician assessment and screening surveys; how-

ever, no study to date has assessed social-media-based

prediction against structured clinical interviews.

Recommendations for future studies
The greatest potential value of social media analysis may

be the detection of otherwise undiagnosed cases. How-

ever, studies to date have not explicitly focused on

successfully identifying people unaware of their mental

health status.

In screening for depression, multi-stage screening strate-

gies have been recommended [32,35] as a means to

alleviate the relatively low sensitivity (around 50%)

and high false positive rate associated with assessments

by non-psychiatric physicians [1,32] or short screening

inventories [35]. Social-media based screening may even-

tually provide an additional step in a mental health

screening strategy. Studies are needed that integrate

social media data collection with gold-standard structured

clinical interviews and other screening strategies in eco-

logically valid samples to test the incremental benefit of

social media based screening and distinguishing between

mental health conditions [15��,21].

Self-reported surveys and clinical diagnoses provide snap-

shots in time. Online social media data may ‘fill in the

gaps’ with ongoing in-the-moment measures of a broad

range of people’s thoughts and feelings. However, as

depressed users may cease generating social media con-

tent [36], alternative uninterrupted data streams such as

text messages and sensor data should also be tested for

ongoing monitoring applications [37].

Ethical questions
The feasibility of social-media-based assessment of men-

tal illness raises numerous ethical questions. Privacy is an

ongoing concern. Employers and insurance companies,

for example, may use these against the interests of those

suffering from mental illness. As mental illnesses carry

social stigma and may engender discrimination, data

protection and ownership frameworks are needed to

ensure users are not harmed [36]. Few users realize the

amount of mental-health-related information that can be

gleaned from their digital traces. Transparency about

which health indicators are derived by whom and why

is critical.

From a mental health perspective, clear guidelines on

mandated reporting are needed. There are open ques-

tions around the impact of misclassifications, and how

derived mental health indicators can be responsibly
Current Opinion in Behavioral Sciences 2017, 18:43–49
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integrated into systems of care [36]. Discussions around

these issues should include clinicians, computer scien-

tists, lawyers, ethicists, policy makers, and individuals

from different socioeconomic and cultural backgrounds

who suffer from mental illness.

Conclusion
The studies reviewed here suggest that depression and

other mental illnesses are detectable on several online

environments, but the generalizability of these studies to

broader samples and gold standard clinical criteria has not

been established. Advances in natural language proces-

sing and machine learning are making the prospect of

large-scale screening of social media for at-risk individu-

als a near-future possibility. Ethical and legal questions

about data ownership and protection, as well as clinical

and operational questions about integration into systems

of care should be addressed with urgency.
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