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SUMMARY

There is increasing interest in the role of cleaning for managing
hospital-acquired infections (HAI). Pathogens such as vancomy-
cin-resistant enterococci (VRE), methicillin-resistant Staphylo-
coccus aureus (MRSA), multiresistant Gram-negative bacilli, no-
rovirus, and Clostridium difficile persist in the health care
environment for days. Both detergent- and disinfectant-based
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cleaning can help control these pathogens, although difficulties
with measuring cleanliness have compromised the quality of pub-
lished evidence. Traditional cleaning methods are notoriously in-
efficient for decontamination, and new approaches have been
proposed, including disinfectants, steam, automated dispersal
systems, and antimicrobial surfaces. These methods are difficult to
evaluate for cost-effectiveness because environmental data are not
usually modeled against patient outcome. Recent studies have re-
ported the value of physically removing soil using detergent, com-
pared with more expensive (and toxic) disinfectants. Simple
cleaning methods should be evaluated against nonmanual disin-
fection using standardized sampling and surveillance. Given
worldwide concern over escalating antimicrobial resistance, it is
clear that more studies on health care decontamination are re-
quired. Cleaning schedules should be adapted to reflect clinical
risk, location, type of site, and hand touch frequency and should
be evaluated for cost versus benefit for both routine and outbreak
situations. Forthcoming evidence on the role of antimicrobial sur-
faces could supplement infection prevention strategies for health
care environments, including those targeting multidrug-resistant
pathogens.

INTRODUCTION

There has been much debate over the infection risk to patients
from contaminated health care surfaces (1). It is now recog-

nized that the environment may facilitate transmission of several
important health care-associated pathogens, including vancomy-
cin-resistant enterococci (VRE), Clostridium difficile, Acinetobac-
ter spp., methicillin-resistant Staphylococcus aureus (MRSA) and
norovirus (2–6). These pathogens are frequently shed by patients
and staff, whereupon they contaminate surfaces for days and in-
crease the risk of acquisition for other patients (7–14) (Table 1).
Environmental screening confirms repeated contamination of
items, equipment, and general sites in bed spaces and rooms of
colonized or infected patients and often throughout multiple clin-
ical areas in a health care institution (15). Health care workers’
hands are liable to touch these contaminated surfaces during pa-
tient care, which increases the risk of onward transmission to oth-
ers (15, 16). Unrecognized environmental reservoirs may also act
as a focus for outbreaks or ongoing sporadic transmission (17).
Recent studies suggest that the risk of acquiring VRE, MRSA,
Acinetobacter spp., Pseudomonas spp., or C. difficile is increased if a
new admission is placed in a room previously occupied by a pa-
tient known to be colonized or infected with one of these patho-
gens (18–23). This provides some support for a key environmental
role in pathogen transmission. Survival characteristics of individ-
ual species or strains on floors and other surfaces could determine
the degree of infection risk for patients from inadequately cleaned
rooms or bed spaces (7, 24).

Keeping hospitals clean has long been regarded as an esthetic
necessity. This has no doubt helped justify the effort and resources
involved, since the evidence confirming links between infection
risk and contaminated hospitals has only just begun to accumulate
(24, 25). In the United Kingdom, cleaning services in the 1990s
were an easy target for cost savings in the absence of robust scien-
tific evidence (24, 26–28). The number of housekeeping staff de-
creased sharply, along with substantial reductions in cleaning
hours. Basic cleaning was not thought to be critical for infection
control and thus provided an opportunity for cost-cutting (24,
28). From the late 1990s and early 2000s, however, there was a

rapid increase in hospital-acquired MRSA infections in the United
Kingdom. This generated much interest in all aspects of pathogen
transmission during health care, including pathogen survival and
the possibility of environmental reservoirs. Hospital cleaning sud-
denly became a focus for patients and politicians alike, supported
by burgeoning studies confirming the benefits from enhanced
cleaning and decontamination during routine and costly outbreak
situations (23, 29, 30). Now, both national agencies and local
health boards have revisited housekeeping policies to reflect new
awareness of the importance of basic hospital hygiene, along with
formal monitoring, feedback to cleaners, and surveillance of key
environmental pathogens (31, 32). While this recognition is wel-
come, there are still many controversial issues regarding the place
of cleaning for controlling hospital-acquired infection (HAI),
compared with, for example, patient screening, isolation, hand
hygiene, and antimicrobial stewardship. Current evidence levels
can be, and are, challenged over quantity and quality (33–35).

Across the world, the cleaning process itself is subject to debate
over frequencies, methods, equipment, benchmarks, monitoring,
and standards for surface cleanliness (1, 17). Cleaning policies
vary considerably, even within the same health district, and rely
heavily upon available resources and political support. While af-
fluent countries debate routine use of nontouch cleaning ma-
chines, underdeveloped countries struggle to provide clean water,
basic equipment, and cleaning staff. Scientists and clinical micro-
biologists continue to argue over the value of detergent cleaning
(e.g., in the United Kingdom and northern Europe) as opposed to
disinfectants (in the United States and Australia) (26, 27, 36, 37).
There are governmental targets for HAI rates in some countries,
which have helped prioritize infection control, including environ-
mental cleaning practices. In the United States, penalties may be
imposed on hospitals that report preventable HAI and poor envi-
ronmental hygiene. The latter is more usually based upon patient
experience and perceptions of cleanliness rather than scientific
measurement (38, 39) The package of incentives, financial sanc-
tions, and public reporting requirements no doubt affects opera-
tional behaviors and outcomes in hospitals subjected to manda-
tory inspection.

There are additional issues concerning cleaners themselves, in
that many of them receive little or no training for what they are
supposed to be doing, and they lack the career progression en-
joyed by most other professions (17). There are fewer opportuni-
ties for advancement in housekeeping positions, often com-

TABLE 1 Survival times and infectious doses retrieved or extrapolated
from published studiesa

Organism Survival time
Infectious
dose

Methicillin-resistant
Staphylococcus aureus

7 days–�7 mo 4 CFU

Acinetobacter 3 days–�5 mo 250 CFU
Clostridium difficile �5 mo 5 spores
Vancomycin-resistant Enterococcus 5 days–�4 mo �103 CFU
Escherichia coli 2 h–16 mo 102-105 CFU
Klebsiella 2 h–�30 mo 102 CFU
Norovirus 8 h–7 days �20 virions
a Survival times and infectious doses of a range of pathogens according to, or
extrapolated from, original studies, some of which involved animal-based research (2,
7–14).
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pounded by language and literacy problems. The status of
cleaning personnel, depicted by lower pay scales and basic condi-
tions, does not necessarily reflect the physical cleaning effort and
personal risks required to protect patients from hospital patho-
gens. Janitorial, housekeeping, and domestic staff are regularly
confronted by risk of injury, poisoning, or scalding from cleaning
equipment and fluids, as well as infection risks from cleaning fa-
cilities accommodating patients with transmissible pathogens
(17).

This review examines the key evidence for basic cleaning as a
major intervention in protecting patients from HAI. Methods for
both manual and automated cleaning are presented and dis-
cussed, along with the disinfectant debate, range of antimicrobial
surfaces, and the need for surface-level standards and routine
monitoring. Much of the evidence originates from affluent coun-
tries, with United Kingdom cleaning policies chosen to illustrate
specific points. Cleaning may be regarded as the most basic infec-
tion control activity performed in 21st century hospitals, but it
remains of crucial importance, and a great deal more work is re-
quired to establish how best to deliver it in a timely and cost-
effective manner.

CLEANING AND HAI

While there is still insufficient evidence for the benefits of routine
cleaning, it is nearly always mentioned within a package of re-
sponses to an outbreak lacking an identified common source (1).
A large number of reports include cleaning as an important con-
trol component for outbreaks of norovirus, VRE, C. difficile,
MRSA, and multidrug-resistant (MDR) Gram-negative bacilli,
including Acinetobacter spp. (1, 17, 40). These pathogens thrive in
the temperate hospital environment and contaminate numerous
sites on surfaces and equipment, including the air (41). Much of
the evidence for cleaning is therefore linked to outbreaks, but
there are a few studies that focus on the impact of enhanced or
alternative cleaning practices on environmental soil in the routine
situation (40). Some of these have measured the cleaning effect
using standards based on ATP bioluminescence or microbiologi-
cal screening and modeled this against HAI outcome for patients
(42–45) (Fig. 1).

MRSA

Evidence that near-patient surfaces in hospitals could host meth-
icillin-resistant S. aureus (MRSA) was put forward by Boyce et al.
in 1997 (46). This study also showed that health care staff could
contaminate their gloves by handling or touching sites in close
proximity to patients colonized with MRSA. This contrasts with a
study published 16 years later, showing that thorough cleaning
failed to reduce health care worker gown and glove contamination
after caring for patients with MRSA (and multidrug-resistant
Acinetobacter spp.) (47). While the risk of health care worker con-
tamination with MRSA remains undetermined therefore, studies
have shown that basic cleaning eliminates MRSA from the ward
environment, with measured benefit for patients. Over a 14-
month period, 13 patients acquired MRSA on a dermatology ward
despite routine control measures (48). Extensive environmental
culturing identified MRSA from the patients’ communal shower
and a blood pressure cuff, with indistinguishable DNA typing pat-
terns found from both patient and environmental isolates. Cases
diminished after enhanced cleaning of shared common areas and
changing the blood pressure cuff between patients (48). Another

MRSA outbreak on a urological ward persisted for more than a
year, despite implementing all the expected infection control in-
terventions, such as patient isolation and hand hygiene programs
(49). After the outbreak strain was recovered from general ward
surfaces, the number of cleaning hours was doubled from 60 h to
120 h per week, and there was an immediate reduction in the
number of new acquisitions. The authors believed that the extra
cleaning was crucial in terminating the outbreak, with cost savings
estimated to be at least £28,000 (approximately $45,000) (49).

Another outbreak of MRSA, this time intermediately resistant
to vancomycin, again created problems for infection control staff
in an intensive care unit (ICU) setting (50). The outbreak did not
resolve until additional measures were introduced, including en-
hanced cleaning. As several control components were applied to-
gether, it was impossible to define the exact effect of either clean-
ing intervention or barrier precautions. Aside from infection
clusters or outbreaks, there is one study examining the effect of
targeted cleaning in the routine situation. An enhanced cleaning
initiative was introduced into two acute-care surgical wards over
two consecutive 6-month periods in a prospective controlled
crossover trial (43). The study cleaner worked from Monday to
Friday only, prioritizing hand touch sites and clinical equipment
for detergent-based cleaning. When the wards received routine
cleaning, without any additional attention toward high-risk sites
or equipment, nine patients acquired acute infections caused by
MRSA, one of whom died and another of whom required surgical
intervention. During the enhanced cleaning periods, however,
there were just four ward-acquired MRSA infections identified.
Based on calculated weekly colonization pressures (MRSA pa-
tient-days), statistical analysis predicted 13 new cases of MRSA
infection during the enhanced cleaning periods, rather than the
four that actually occurred. The study concluded that targeting
hand touch sites with detergent wipes could potentially reduce the
risk of postoperative MRSA infection, thus saving at least £30,000
($51,000) over a 1-year period (43).

Another study conducted on 10 ICUs introduced a new clean-
ing regimen for rooms previously occupied by patients colonized

FIG 1 Relationship between environmental bioburden and hospital-acquired
infection. This figure shows a relationship between the number of surgical
intensive care unit (SICU)-acquired infections and total hygiene fails during a
2-month patient and environmental surveillance study in a Glasgow teaching
hospital. Hygiene failures were defined as aerobic colony counts (ACCs) of
�2.5 CFU/cm2 and/or the presence of Staphylococcus aureus on hand touch
sites (42).
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with MRSA or VRE (51). The new regimen included a bucket
method for soaking cleaning cloths and feedback to cleaners using
fluorescent markers. Although the study was quasi-experimental,
environmental monitoring showed decreased contamination of
room surfaces with MRSA and VRE after initiating the enhanced
cleaning (27% versus 45% of cleaned rooms from baseline). Over
the same period, patient acquisition of MRSA was reduced by 49%
(and that of VRE by 29%) following the augmented cleaning pack-
age (P � 0.001 for both) (51).

Two recent studies report decreased rates of MRSA following
implementation of a control bundle including targeted screening
of patients, environmental sampling, hand hygiene, laboratory
methods, and enhanced decontamination of patient rooms. The
first used a pulsed xenon UV device (PX-UV) in three American
hospitals, with an overall total of 777 beds in the study hospitals
(52). Following identification of colonized patients, a 5-day topi-
cal clearance protocol was performed, which, along with PX-UV,
ultimately reduced the rate of hospital-acquired MRSA acquisi-
tion by 56% across the whole health care system after 6 months
(P � 0.001) (52).

The second study evaluated the effect of hydrogen peroxide
(HP) decontamination alongside patient screening for MRSA in a
300-bed Australian hospital (53). This study ran for 6 years, rather
than 6 months, and used a retrospective before-and-after design
to assess detergent cleaning versus hydrogen peroxide decontam-
ination of rooms recently occupied by MRSA patients. Targeted
environmental screening was performed after room cleaning
alongside ongoing surveillance of patient acquisition of MRSA
throughout the hospital. Newly identified patients were isolated
and placed on contact precautions but were not offered a topical
clearance regimen. MRSA was recovered from 25% of rooms fol-
lowing detergent cleaning and from 19% of rooms after exposure
to hydrogen peroxide (P � 0.001). There was a 3.5% reduction in
the overall proportion of rooms demonstrating persistent MRSA
contamination after using hydrogen peroxide (P � 0.08). Over
the 6 years, the incidence of MRSA acquisition was reduced from
9.0 to 5.3 per 10,000 patient-days between detergent and disinfec-
tant periods, respectively (P � 0.001).

Both of these studies concluded that enhanced decontamina-
tion methods contributed toward decreased MRSA rates, but fur-
ther work on the individual effects of PX-UV and hydrogen per-
oxide is warranted (52, 53). As before, the proportional effect
from additional screening and other package components in con-
junction with introduction of disinfectant or UV light could not
be accurately determined.

VRE

It is well known that vancomycin-resistant enterococci (VRE) can
survive long term in the hospital environment (7). Multiple clean-
ing practices fail to remove VRE from a range of sites, despite use
of powerful disinfectants (54–57). There are reports showing that
surfaces remain contaminated with VRE when cleaning cloths are
reused on sequential surfaces, when there is inadequate contact
time between a surface and applied disinfectant, and when items
or surface are sprayed and wiped over, rather than being actively
scrubbed (3, 18, 55, 58). Such persistence is not exclusive to VRE,
since other pathogens also survive the cleaning process, but VRE
seems to be particularly adept at withstanding repeated attempts
at disinfection, including double bleach-based cleaning (54–56).

Current protocols using disinfectants can be effective if near-

patient surfaces, such as bed rails, and frequently touched sur-
faces, such as door handles, are physically scrubbed at least once
daily. There is evidence that more conscientious cleaning can con-
trol VRE (3, 51, 57). A sentinel study in 2006 demonstrated the
impact of improved cleaning on VRE transmission in a medical
ICU, first as a single intervention and then alongside a hand hy-
giene initiative (58). Targeting cleaning efficiency decreased both
surface contamination from VRE and the number of patients ac-
quiring the organism; following this with a hand hygiene program
further reduced surface cultures of VRE and patient acquisition to
the lowest levels gained. There was also less VRE on health care
worker hands (58).

Escalating VRE cases in a Brazilian hospital prompted a range of
activities, including emphasis on environmental cleaning, contact
precautions, and the introduction of an educational program
(59). Improvements in cleaning included use of bleach for bath-
room surfaces and 70% alcohol for furniture and patient equip-
ment. The overall package helped prevent dissemination of VRE
throughout the hospital, including intensive care, with a decrease
in acquisition rate from 1.49 to 0.33 (P � 0.001) (59). Bleach-
based terminal cleaning was used for an earlier study to control
VRE in a hemato-oncology unit, again as part of an intervention
package (57).

Another “bundle” of interventions, including thorough clean-
ing and surface screening cultures, was implemented in three
ICUs by a team in South Korea (60). Clinical and surveillance
cultures identified 50 patients with VRE during the outbreak,
most of whom (n � 46) had vancomycin-resistant Enterococcus
faecium (VREF). During the first 2 months of the outbreak, PFGE
analysis of VREF isolates revealed six main strain types, with re-
lated clusters between two of these. Housekeeping staff used 5%
sodium hypochlorite to clean all surfaces three times a day. The
outbreak finally came to a halt 5 months after implementing the
package of interventions, with a reduction in the weekly preva-
lence rate from 9.1/100 to 0.6/100 patient-days (60).

A comparable study described implementation of a multicom-
ponent package, also based on bleach disinfection, as a response to
increasing numbers of patients with VRE (61). Additional clean-
ing supervisors were appointed to manage the introduction and
delivery of a standardized cleaning regimen using a novel product
containing detergent and sodium hypochlorite (1,000 ppm). Al-
cohol-based hand hygiene was encouraged, along with sleeveless
aprons instead of long-sleeved gowns and gloves. VRE coloniza-
tion and/or infection and surface contamination were compared
before and after implementation of the infection control package.
There was a 24.8% reduction (P � 0.001) in the number of new
patients colonized with VRE and a 66.4% reduction (P � 0.012) in
environmental contamination, despite a similar proportion of pa-
tients already colonized on admission. While VRE bacteremia de-
creased by over 80% (P � 0.001), the rate of vancomycin-suscep-
tible enterococcal bacteremia did not change during the study
(P � 0.54). Susceptible enterococcal infection may well derive
from the patient’s own endogenous flora, whereas resistant en-
terococci are more likely to be acquired from persistent surface
reservoirs. The “bleach-clean” package encouraged the decline in
new VRE acquisition among particularly vulnerable patients
alongside an overall reduction in VRE bacteremia rate throughout
the hospital (61).

Extreme environmental survival demonstrated by VRE offers
an explanation for the increased risk of VRE acquisition for pa-
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tients placed in a room previously occupied by an individual col-
onized or infected with VRE (19, 51). The clinical and environ-
mental effects of hydrogen peroxide vapor (HPV) for room
disinfection were assessed following discharge of patients with
MRSA, C. difficile, multiresistant Gram-negative bacilli, and VRE.
The risk of acquiring MRSA, C. difficile, and multiresistant Gram-
negative rods was not significantly reduced after HPV decontam-
ination, but patients admitted into HPV-treated rooms were 80%
less likely to acquire VRE (62). This suggests that eradication of
persistent reservoirs of VRE may be particularly important for
controlling acquisition risk. Cleaning and disinfection should be
made a priority for managing VRE and possibly more so than for
other hospital pathogens.

C. difficile

The benefits of cleaning for controlling C. difficile are well estab-
lished (6, 63). The use of chlorine-releasing disinfectants for
rooms contaminated with C. difficile reduces the amount of spores
in the environment, with additional evidence suggesting that this
affects recurrence and transmission of C. difficile-associated infec-
tion (CDI) (64). There is particularly good evidence for more
concentrated products, especially those releasing higher levels of
free chlorine (e.g., 5,000 mg/liter). The benefits of chlorinated
products are more obvious in units with high rates of CDI (e.g.,
those for care of the elderly, stroke rehabilitation, etc.) or if used in
conjunction with an outbreak. It should be noted that the overall
efficiency of disinfectants for eliminating environmental spores
and lowering CDI rates is dependent upon a number of factors,
including knowledge and training of cleaning staff, contact time of
disinfectants, and overall time allocated to staff for cleaning. Spe-
cific strains of C. difficile may also exhibit inherent or acquired
properties that make them more resilient to disinfection attempts
(64, 65).

A study published in 2007 evaluated additional bleach cleaning
in two ICUs following an increase in patients with C. difficile (66).
The extra cleaning was delivered to all parts of one ICU, including
rooms used only by staff. Clinical equipment was cleaned with
hypochlorite-containing cloths twice a day. The second unit in-
troduced enhanced bleach cleaning in isolation rooms accommo-
dating patients already infected with C. difficile. Both units wit-
nessed a decrease in infection rates over the next few months,
which remained at a lower level for at least 2 years after the bleach
cleaning program (66).

Increased rates of CDI in three American hospitals prompted a
change of disinfectant for terminal room cleaning (67). After dis-
charge of infected patients, all room surfaces from ceiling to floor
were wiped over with towels soaked in dilute bleach instead of the
usual quaternary ammonium product. The prevalence density of
C. difficile fell by 48%, with a prolonged and significant reduction
in the overall rate of hospital-acquired CDI. Another group im-
plemented 0.55% bleach wipes for daily cleaning of two medical
units with a high incidence of C. difficile (44). There were 31 pa-
tients who acquired C. difficile on the wards before the interven-
tion and 4 cases afterwards on these wards over the following year,
representing a 7-fold decrease in C. difficile cases. There were no
other interventions introduced other than targeted cleaning with
bleach wipes (44).

A systematic cleaning and disinfection program was assessed by
screening frequently touched surfaces for the presence of C. diffi-
cile in CDI rooms after cleaning (68). Three sequential interven-

tions were introduced over a 21-month period: (i) fluorescent
markers placed at key sites for the purposes of monitoring and
feedback to cleaners, (ii) use of automated UV equipment for
enhanced disinfection, and (iii) support from a designated team
responsible for daily assessment of terminally cleaned CDI rooms.
The fluorescent marker strategy improved the cleaning quality of
frequently touched sites from 47% to 81% (P � 0 0.0001). The
number of screened sites positive for C. difficile decreased by 14%
(P � 0.024), 48% (P � 0.001), and 89% (P � 0.006) for interven-
tions 1, 2, and 3, respectively, compared with prestudy levels. Pos-
itive cultures after disinfection were recovered from two-thirds of
CDI rooms before the study began, whereas during periods 1, 2,
and 3, the percentages of CDI rooms with positive cultures after
disinfection fell by 57%, 35%, and 7%, respectively (68).

More support for the role of cleaning and disinfection in con-
trolling CDI comes from a recent English study (69). The team
fitted a statistical breakpoint model against incidence rates of
likely hospital-acquired C. difficile in a university hospital from
2002 to 2009 and in a district general hospital from 2005 to 2009.
The most important infection control interventions during these
periods were placed within appropriate categories (antibiotics,
cleaning, isolation, and other) for both hospitals and mapped
against breakpoints identified by the models. The breakpoints
were found to correspond with novel cleaning practices rather
than any of the other control interventions. Statistical modeling
permitted a means of assessing the impact of different interven-
tions and showed that additional or enhanced cleaning activities
were most likely to be responsible for incremental reductions in
rates of C. difficile at both hospitals (69).

While cleaning and decontamination strategies clearly have an
effect on patient acquisition rates, it should be remembered that
antimicrobial policies can also be very effective for controlling C.
difficile. Severe restrictions on first-line use of cephalosporins and
quinolones in a district general hospital reduced acquisition of
nosocomial C. difficile by 77% (2.398 to 0.549 cases/1,000 patient
beds) (70). The antibiotic policy resulted in an immediate de-
crease in CDI without any additional infection control interven-
tions. In this study, antibiotic stewardship, not cleaning, was fun-
damental in controlling C. difficile (70). Beneficial effects of
stewardship can be assessed by spatiotemporal modeling, which
suggests that protecting the patient from C. difficile acquisition
through careful antibiotic choice is more likely to benefit infection
control than attempts at curtailing transmission once a patient is
symptomatic (71). Faced with a septic patient, however, it is not
always possible to restrict antibiotics or choose agents less likely to
encourage CDI. Under these circumstances, stringent environ-
mental decontamination should be maintained in order to pre-
vent ongoing transmission.

Acinetobacter

Many studies have emphasized the importance of cleaning in con-
trolling outbreaks of Acinetobacter spp., particularly those caused
by multiresistant strains in critical care units (4, 72, 73). One study
describes an outbreak due to multiresistant strains of A. bauman-
nii involving more than 30 patients in two ICUs (4). Epidemic
strains were identified from environmental reservoirs throughout
both of the affected ICUs, which ultimately required complete
closure for terminal disinfection in order to bring the outbreak to
an end (4). Another study reported a prolonged outbreak in a
neurosurgical ICU, which prompted ongoing environmental
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sampling in order to identify any persistent reservoirs (74). The
epidemic strain was frequently isolated from hand touch sites be-
side patients, with a clear association demonstrated between the
levels of surface contamination and new patient acquisition. The
authors stated that comprehensive cleaning is fundamental for
controlling Acinetobacter outbreaks in ICU settings, although the
most appropriate cleaning practices in the routine situation re-
main ill-defined (74).

One further study involving spread of a multiresistant A. bau-
mannii strain in a critical care unit also provides environmental
sampling data during an outbreak affecting over 60 patients (75).
Once again, there appeared to be a relationship between the num-
ber of positive environmental cultures and new patient cases. The
authors stated that systematic screening allowed them to target
cleaning resources in order to gain control of the outbreak (75).

An investigation following a sudden increase in the number of
children acquiring Acinetobacter on a pediatric burn ward identi-
fied the role of frequently handled clinical equipment as an out-
break reservoir (76). The outbreak occurred after it was decided to
install computers beside every child’s bed. Environmental screen-
ing identified the organism on several surfaces in the children’s
rooms, including the plastic covers on top of the computer key-
boards. Until the outbreak occurred, there had been no recom-
mendation for including bedside computers and their compo-
nents in the routine cleaning specification. Targeted infection
control measures were introduced, which included decontamina-
tion of the plastic covers and mandatory glove use for staff before
handling the computers. These simple measures were effective in
stopping the outbreak (76).

A 3-year prospective study took place in intensive and coronary
care units in order to evaluate a bundle of interventions aimed at
reducing long-term drug-resistant Acinetobacter (77). The inter-
ventions included a hand hygiene program, patient surveillance,
barrier precautions, contact isolation, cohorting affected patients,
and intensive cleaning with sodium hypochlorite (1:100) (77).
The rate of A. baumannii colonization and/or infection was 3.6
cases per 1,000 patient-days before the interventions were intro-
duced, with the rate then decreasing by 66% to 1.2 cases per 1,000
patient-days (P � 0.001) by the end of the first year. The rate was
further reduced by 76% to 0.85 cases per 1,000 patient-days (P �
0.001) 2 years later (77).

Another outbreak of Acinetobacter in an ICU affected 18 pa-
tients and was traced to a sink in one of the patient rooms (78).
Identification of the sink trap as the reservoir suggested that the
whole of the horizontal drainage system could be potentially con-
taminated. Application of a bleaching protocol eradicated the res-
ervoir and curtailed further acquisition of MDR A. baumannii.
However, there were additional infection control measures intro-
duced at the same time, which included contact isolation for every
patient identified with MDR A. baumannii, hand hygiene training,
additional nurse teaching, use of an alcohol hand gel, and direct
observation of cleaning in the ICU (78). Once again, it is impos-
sible to extricate the contribution of reservoir decontamination
when several interventions were initiated simultaneously as part
of an outbreak control package.

One further study provides evidence to support the importance
of cleaning in controlling outbreaks of Acinetobacter (79). As with
most of the studies described, this outbreak also occurred in an
ICU, and an extremely resistant outbreak strain resisted carbap-
enem antibiotics. Carbapenem-resistant A. baumannii was grown

from multiple environmental samples during the outbreak, in-
cluding a mattress, a vital signs monitor, near-patient horizontal
surfaces, computer components, and a glucometer. After failure
of thorough cleaning attempts with detergent and alcohol wipes, a
commercial oxidizing disinfectant (Virkon S [50% potassium
peroxomonosulfate, 15% sodium alkyl benzene sulfonate, and 5%
sulfamic acid]) was selected for enhanced cleaning. The introduc-
tion of Virkon-based cleaning rapidly brought the outbreak to a
close. The authors were uneasy about the temporal association,
because epidemics can resolve of their own accord. Furthermore,
they did not audit cleaning effectiveness, hand hygiene compli-
ance, antimicrobial consumption, or other potentially confound-
ing factors. However, the sudden and sustained decrease in the
number of cases of infection with a carbapenem-resistant A. bau-
mannii strain after implementing use of a powerful new disinfec-
tant is compelling (79).

It appears that even stringent manual cleaning with disinfection
does not necessarily eliminate Acinetobacter completely from the
environment. The reasons for this are unknown but probably in-
clude poor cleaning practices, missing high-risk sites, overwhelm-
ing bioburden, and tolerance to, or misuse of, disinfectants (80,
81). In another study, surfaces in rooms occupied by patients col-
onized with A. baumannii remained contaminated with the or-
ganism despite disinfectant-based cleaning (81). This study also
reported contamination of rooms accommodating patients not
previously shown to have any recent cultures of A. baumannii,
suggesting long-term persistence in the near-patient environ-
ment. There was a significant reduction in Acinetobacter contam-
ination following disinfection, but over half the rooms that were
positive prior to cleaning still harbored the organism on a range of
surfaces after cleaning (81).

Multidrug-Resistant Gram-Negative Bacilli

While the role of cleaning in controlling Acinetobacter outbreaks is
now accepted, the same cannot be said in relation to outbreaks of
multidrug-resistant (MDR) Gram-negative bacilli. As for any out-
break, enhanced cleaning usually comes as part of an overall bun-
dle of activities in reaction to cross-infection incidents (1). There
are, however, plenty of reports detailing coliforms associated with
discrete items of equipment, specific environmental reservoirs, or
a particular product or practice during outbreak investigations
(24). Finding a single reservoir and eradicating it usually stops an
outbreak, and a positive outcome would naturally encourage pub-
lication (82–85). Terminating an outbreak caused by single-
source contamination is much easier to achieve than implement-
ing a widespread cleaning regimen that has to cover a multitude of
diverse items and surfaces.

Away from the outbreak situation, it has long been assumed
that Gram-negative bacteria survive poorly on surfaces. This
means that any environmental contribution toward HAI by this
group of organisms has not been widely investigated. Recent work
has challenged this, and there is a growing consensus that envi-
ronmental cleanliness could be just as important for controlling
transmission of MDR coliforms as it is for MRSA and other or-
ganisms (86, 87). This is supported by studies showing that Esch-
erichia coli and Klebsiella spp. may survive desiccation for more
than a year and Serratia marcescens for several months (7). There
are additional reports demonstrating persistence of MDR coli-
forms throughout a variety of health care environments, with
some evidence that MDR Klebsiella is recovered from surfaces
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more often than MDR E. coli (15, 88–91). One recent study
screened the near-patient environment beside patients previously
identified with carbapenem-resistant Enterobacteriaceae (CRE)
and found that about 25% of the sites tested were contaminated,
presumably by the patients’ own organisms (90). This study also
demonstrated that both timing of sampling and local cleaning
strategies could affect data on the frequency of environmental
contamination by CRE. This is no doubt true for other environ-
mental pathogens.

Other than sampling and cleaning practices, it is possible that a
lack of evidence for viable MDR coliforms and corresponding
infection risk posed by hospital surfaces is due to insensitive
screening methods (90, 92). A targeted recovery strategy was used
to sample frequently touched surfaces situated beside patients col-
onized by MDR coliforms (light switch, bed rail, bedside locker,
and mattress cover) and two sites in nearby bathrooms shared by
patients (shower handrails and sink faucets) (92). Environmental
screening next to one of these patients recovered MDR Klebsiella
pneumoniae from four of six sites sampled, all of which were in-
distinguishable from the strain obtained from the same patient’s
urine. The sites contaminated with the MDR strain were either
beside this patient or from the adjacent communal bathroom.
Given the low recovery rates, limited detection, and relatively
short survival times (1.5 to 2 h), isolating even small numbers of
MDR coliforms suggested a relatively high initial burden on sur-
faces. Contamination probably occurred within a short time be-
fore sampling (92).

Hospital sinks represent one of the most frequently implicated
reservoirs for MDR Gram-negative bacilli, including MDR coli-
forms (93, 94). K. pneumoniae strains demonstrating prolonged
survival within plumbing components are also more likely to har-
bor extended-spectrum �-lactamases (95). Persistent reservoirs of
resistant K. pneumoniae were detected from multiple sites associ-
ated with a contaminated sink in a large Scottish hospital (83).
More recently, four patients in a neurosurgical ICU acquired
MDR K. pneumoniae thought to have originated from another
contaminated sink during a 7-month period (85). Removal and
replacement of the sink and related pipes and upgrading the prac-
tices for sink usage and decontamination brought the outbreak to
an end. A protracted clonal outbreak of multiresistant IMP-8-
producing Klebsiella oxytoca in a Spanish ICU was finally termi-
nated by removing sinks, drain and trap components, and even
the horizontal system connecting all suspected sinks (96). If the
usual control measures fail to terminate an outbreak, then alter-
native and/or unusual reservoirs should always be considered,
particularly when preliminary environmental screening is nega-
tive.

Another outbreak of MDR Klebsiella was linked with tipping
patient fluids down the nearest available sink rather than taking
clinical waste to the designated sluice further away (97). A recent
audit of sinks in ICU rooms suggested that lower rates of sink
contamination are significantly associated with daily bleach disin-
fection, as well as restricting sinks for hand washing only and not
routine disposal of fluid waste from patients (94).

Yet another outbreak of resistant K. pneumoniae highlights the
risks of reusing disposable equipment (84).This outbreak in-
volved neonates, most of whom were infected just after birth or
within a few days of hospitalization. Cases occurred among those
babies receiving mucous aspiration due to respiratory distress.
Although a new aspiration tube was used for each separate baby, it

was cleaned only by rinsing in a bowl of tap water between aspi-
ration episodes for the same baby. The bowl was not routinely
cleaned, and the water was left unchanged between babies. Not
surprisingly, the water was found to be contaminated with the
same resistant K. pneumoniae strain (84).

The lack of evidence for benefit from general surface cleaning
alone for MDR Gram-negative organisms, even as a response to an
outbreak, is well recognized (98). There is a recent report emphasiz-
ing additional cleaning following recovery of a carbapenemase-pro-
ducing K. pneumoniae from patients in a United Kingdom hospital
(99). Chlorine-based cleaning was implemented throughout the
ward, including patient-related items. Additional cleaning was
only one component of the overall infection control strategy,
however, along with a urinary catheter care bundle, tagging of
patient notes, improved hand hygiene, and contact precautions
for all cases (99). Another report describes an educational inter-
vention to improve environmental cleaning and hand hygiene in
an 11-bed gastrointestinal surgical ICU (100). There may well
have been an underlying outbreak at the start of this initiative,
since a high proportion of patients appeared to be already colo-
nized. Following the introduction of terminal cleaning with glu-
taraldehyde, single-use equipment, barrier precautions, and hand
hygiene improvements, the number of patients colonized with
MDR Enterobacteriaceae decreased from 70% to 40%, attributed
to the overall interventional package (100).

Pseudomonas and Stenotrophomonas spp.

Despite lack of evidence for defined transmission pathways, there
are studies suggesting that water sources provide a reservoir for
Pseudomonas and Stenotrophomonas spp. in the health care envi-
ronment (101). These opportunistic organisms pose a risk of col-
onization and infection for particularly vulnerable patients. One
previous study showed that Pseudomonas aeruginosa may be
transmitted from contaminated sinks to hands during hand wash-
ing (102). While survival on dry surfaces may only be transient,
persistent reservoirs of these organisms can be traced to biofilm
adherent to surfaces on sinks, sink traps, pipes, water lines, and
hospital drains (103, 104). Biofilm is made up of a multifaceted
matrix of living organisms, which contaminates internal plumb-
ing and provides a long-term reservoir for water-associated or-
ganisms, including pathogens. The biofilm structure itself is resil-
ient and situated on multiple surfaces inside traps, pipes, and
internal water filters. Bacteria present within biofilm are more
likely to be able to withstand chlorine-containing and other types
of disinfectants. They are also likely to demonstrate an increased
capacity for antimicrobial resistance (95, 105).

Various outbreak investigations have shown that recovery of
Pseudomonas and Stenotrophomonas maltophilia from water
sources and adjacent surfaces can be linked with indistinguishable
strains cultured from patient specimens (106–108). An outbreak
of Burkholderia cepacia on a pediatric unit was traced to sinks and
was thought to be associated with the presence of aerator filters
fitted to the taps (109). Faucet aerators have also been implicated
in an outbreak of S. maltophilia in a surgical ICU, with pulsed-
field gel electrophoresis (PFGE) illustrating indistinguishable
strains from patients and aerators (106). For this reason, aerators
should be replaced with flow straighteners in health care premises.

Exposing biofilm to chlorine-containing products is the usual
reaction to disinfection attempts, but even prolonged irrigation
fails to remove all adherent biofilm. Reliable control requires
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stringent and repeated cleaning strategies, aimed at physical dis-
ruption of the biofilm lining the internal surfaces of affected water
systems (108, 110). These are often right beside patients in the
clinical environment and difficult, or even impossible, to access.
Infection control initiatives require close collaboration between
structural facilities, clinical, and housekeeping staffs in order to
safely replace components or remove persistent biofilm. Total
eradication is rarely achieved, but regular inspection and repeated
cleaning followed by chlorine-based or similar disinfection will
hinder further cases. Long-term control of Pseudomonas and
Stenotrophomonas is dependent upon integration of an effective
cleaning strategy into a targeted maintenance program (17, 101).

Norovirus

While the environmental role in the transmission of norovirus is
difficult to prove, the most convincing evidence comes from out-
breaks where groups in a common setting with no known direct
contact have been sequentially affected. The best examples of these
come from outbreaks occurring outside hospitals. One report in-
volves a single aircraft on which a single passenger vomited during
a long-haul flight (111). Over the next 6 days, flight attendants
working on the aircraft in multiple flight sectors developed gas-
troenteritis. Analysis of specimens from these aircrew attendants
demonstrated an unusual norovirus genotype. The only possible
exposure was working in the cabin environment, since there were
no other opportunities for person-to-person transmission (111).

Another study describes an outbreak linked to a public concert
hall (112). More than 300 people developed gastroenteritis during
a five-day period after a concert attendee vomited in the hall. The
highest risk occurred among people seated closest to the seat be-
longing to the original attendee. Similar events were recorded on a
cruise ship, where six consecutive cruises were affected (113).
While crew members may have carried the virus between cruises,
it is highly likely that the linked series of outbreaks was due to
environmental persistence of infectious norovirus. These inci-
dents suggest that without scrupulous cleaning following a single
incident, outbreaks will commence, escalate, or even resume.

Outbreaks of norovirus can be particularly ferocious in closed
or semiclosed communities, such as transport vehicles and a vari-
ety of public venues (114, 115). Sudden and widespread outbreaks
can escalate without warning in nursing and residential homes,
schools, hotels, and prisons (114, 116–118). CDC reported an
outbreak of norovirus in a primary school that affected over 100
staff members and pupils (117). The investigation following this
outbreak identified person-to-person contact as a major factor in
viral transmission, but there was evidence that the environment
was also implicated. Despite intensive cleaning with bleach soon
after notification, norovirus was recovered from computer com-
ponents in a frequently used classroom the next day. The environ-
mental strain was indistinguishable from that retrieved from
symptomatic patients. Public health staff excluded symptomatic
cases from the school, advised hand hygiene improvements, and
organized additional 1:50 bleach cleaning of environmental sites
that might have been overlooked during the original disinfection
strategy (117).

The role of cleaning in the control of norovirus outbreaks in
hospitals and other health care facilities is unquestioned (5, 116).
Indistinguishable genotypes of norovirus from ward surfaces and
patients have been reported, with viable virus apparently surviv-
ing enhanced cleaning (119). One recent study identified norovi-

rus reservoirs from expected sites near bathroom showers and
toilets, but ward-based screening also demonstrated viral contam-
ination of near-patient sites and a wide range of clinical equip-
ment, including blood pressure and pulse oximeter machines,
thermometers, notes trolleys, and even soap and alcohol gel con-
tainers. Persistent viral reservoirs place new admissions at contin-
ued risk of norovirus acquisition. Indeed, overloaded health care
facilities may experience prolonged outbreaks, especially if con-
fronted with a higher throughput of patients lacking prior expo-
sure (119).

All cleaning specifications, particularly regarding toilets and
bathrooms, should use chlorine-based disinfectants at an appro-
priate concentration for norovirus outbreaks. Detergent-based
cleaning is not sufficient to eliminate norovirus from the environ-
ment (120). A recent in vitro study measured residual contamina-
tion of surfaces with norovirus after detergent cleaning with or
without a disinfectant (121). The authors concluded that cleaning
with liquid soap followed by a 1,000-ppm chlorine wipe generally
produced the lowest level of persistent contamination. The infec-
tivity index of norovirus, however, meant that even the low levels
achieved after a two-tier approach would still represent a risk for
hand contact transmission. The authors suggested lengthening
the contact time between chlorinated disinfectant and contami-
nated surfaces to a minimum of 5 min, since this reduced residual
levels of virus to less than those capable of causing infection (121).
Translating the results from this study to the clinical environment
poses a challenge, since leaving disinfectants on surfaces for even 5
min in a busy ward may not be practical.

MANUAL CLEANING: PROCESS AND EQUIPMENT

Routine Cleaning Practices

In hospitals, environmental surfaces are routinely cleaned, or
cleaned and disinfected, according to predetermined cleaning pol-
icies (e.g., hourly, daily, twice weekly, etc.) or when surfaces ap-
pear visibly dirty, if there are spillages, and always after patient
discharge (31, 122). The type and frequency of routine cleaning
depend upon clinical risk, patient turnover, intensity of people
traffic, and surface characteristics. Frequent and stringent clean-
ing specifications are applied to areas within operating theaters,
intensive care units, transplant wards, and so-called “clean”
rooms, where sterile medications are decanted and/or processed.
Hospital kitchens, restaurants, and cafes also require targeted fre-
quent cleaning, as do the laboratories and staff on-call rooms. Less
comprehensive cleaning regimens are carried out for corridors
and stairwells, offices and waiting rooms, and selected outpatient,
storage, general purpose, and entrance areas.

All hospitals should provide a written specification of cleaning
services and their delivery for all areas of the hospital, whether
provided by in-house or externally contracted staff (31, 122, 123).
These should be reviewed on a regular basis by cleaning supervi-
sors, hospital managers, and structural facilities and infection
control personnel. Recent recommendations on innovation and
research in infection control support the opportunity for hospitals
to test new cleaning and decontamination technologies and pub-
lish their findings (124).

In the United Kingdom, routine cleaning is performed manu-
ally, with basic equipment, including buckets, mops, brushes,
brooms, wipes, and cloths (31, 122). Electrical equipment in-
cludes vacuum cleaners, floor polishers, and scrubbing machines.
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Surfaces fall into two general categories: critical and noncritical
surfaces. The latter encompass sites such as floors, furniture, soft
furnishings (including curtains), doors, wall fixtures, ledges and
shelves, radiators, ceilings and walls, grilles and other ventilation
components, cupboards, etc. Critical surfaces include those that
are frequently touched or handled, such as handles, buttons,
switches, computer keyboards, and bed controls, and noninvasive
clinical equipment, such as electrocardiogram (ECG) machines,
blood pressure cuffs, patient hoists, stethoscopes, and intravenous
drip stands.

Noncritical Surfaces

Neutral detergent is used to lift soil, using disposable or reusable
materials. Over 80% of the bacterial load on hospital floors can be
removed by detergent-based cleaning only (125). Water used for
mop rinsing usually becomes increasingly contaminated during
this process, especially if used repeatedly without changing or if
surfaces are heavily soiled and/or have not been cleaned within the
previous 24 h. The water then serves as a medium for spreading
microbes around the environment. It should be routinely dis-
carded in favor of fresh detergent solutions between bed spaces or
every 15 min, whichever is sooner (122). Disinfectants can be used
for floors in high-risk clinical areas, although there is no evidence
that any microbial reduction persists for substantially longer pe-
riods than that achieved by detergent alone (26, 27).

Mop heads may be disposable, with the length of time and/or
areas of use specified; if not, they are employed for a particular
duty, e.g., operating theater, before being bagged and sent for
decontamination, usually on a daily basis (122). Failure to ade-
quately decontaminate reusable materials permits survival of mi-
crobes, including spores, which may then contaminate the next
surface to be cleaned. This may occur despite use of disinfectants,
since certain organisms can resist the effect of specific chemical
agents either naturally, through acquired resistance, or protected
by biofilm (126–128).

Both detergent and disinfectant wipes and cloths can be used to
wipe over noncritical surfaces on a routine basis, with disposable
products obviating the need for decontamination (122). Cleaning
staff require education on which product can be used for which
surface and how long a wipe or cloth should be used before dis-
posal. As a general guide, one wipe or cloth can be used for non-
critical surfaces in one room or bed space, not including bathroom
areas. Cleaning materials for the latter should always be kept sep-
arate from those used for other ward surfaces (122). Disposable
wipes are quick and easy to use but may leave excess moisture or
residues on surfaces, which can attract additional soil and ulti-
mately spoil the finished appearance. They may also be expensive
and cause allergic reactions among housekeepers, with or without
protective clothing, including gloves.

Automated assistance includes vacuum and steam cleaners as
well as floor scrubbers and polishers. Use of a vacuum cleaner
before wet mopping reduces overall soil, which may otherwise be
spread around during the mopping process (24). Scrubbing ma-
chines achieve a high standard of cleanliness for floors and are
often used for cleaning operating theaters on a routine basis (125).
There is a longer-term beneficial microbiological effect seen after
using these machines, but they tend to be cumbersome as well as
labor-intensive (125).

Critical Surfaces

Frequently touched items such as telephones, handles, taps, light
switches, levers, knobs, buttons, keyboards, push plates, toys, etc.,
are found in most health care institutions. Repeated handling in-
creases the risk of contamination by pathogens, which then leads
to hand-based transmission. These items are likely to benefit from
enhanced cleaning, including disinfection (123, 129). High-touch
sites or surfaces can be identified through direct observation or
environmental screening using fluorescent or other markers
(130).

A study performed in 1999 described the inoculation of a tele-
phone handle in the middle of a neonatal ICU using fragments of
cauliflower mosaic virus. Over the ensuing week, the study team
tracked dispersal of the viral pieces around the unit between hand
touch sites (131). Before inoculating the telephone, over 30 sites
for sampling were chosen in each of six patient rooms according to
the risk of direct or indirect transmission of pathogens. These sites
included equipment buttons, handles, computers, patient charts,
and hand lotion dispensers. Over half (58%) of the sites screened
in the room containing the inoculated telephone were persistently
contaminated with the DNA marker. The number of sites positive
for viral markers peaked at 8 h (78%) before declining to 23% 1
week later. Around 18% of sites were positive in the remaining five
rooms throughout the week, with a similar decline. The most
commonly contaminated sites in all six rooms were personnel
hands, computers, blood gas analyzers, door and telephone han-
dles, control buttons and knobs, patient monitors, and medical
charts (131). Such data specifically highlight the areas that would
benefit from more frequent cleaning or disinfection. The recogni-
tion of high-risk sites for potential pathogen transmission utilizes
principles employed by the food industry, whereby a monitoring
framework is constructed specifically to prevent contamination
during food production (132). This framework is based on a haz-
ard analysis critical control point (HACCP) system and aims to
eliminate risk through a variety of integrated control strategies
(132).

Near-patient hand touch sites constitute the bulk of critical sur-
faces in a ward. Routine decontamination is usually included
within institutional cleaning policies, including designated tasks
for a range of staff. This can vary between occupied and nonoccu-
pied beds, electrical and nonelectrical items, and clinical and non-
clinical equipment, all of which illustrates cleaning complexities
and the potential for fragmented responsibility between house-
keeping, nursing, and other clinical staff. Daily attention with de-
tergent wipes may be sufficient to control bioburden on an acute-
care ward, but high-risk sites in intensive care units may require
more frequent attention (133). Two studies have clearly shown
how MRSA rapidly recontaminates high-touch sites in the ICU
setting after cleaning (134, 135).

Clinical Equipment

Given the range and types of clinical equipment available in to-
day’s hospitals, it is beyond the scope of this review to describe and
compare decontamination strategies for all items that might be
found on a ward. There is, however, an important decontamina-
tion principle related to clinical equipment that applies to any
item used for patients excluded from routine domestic specifica-
tion (136, 137). All clinical equipment should be cleaned and/or
decontaminated before and after use for all patients regardless of
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how often it is used, where it is used, or what it is. An item in-
tended for patient use should be inspected carefully before it is
employed, and if prior cleaning is not evident by either notifica-
tion or obvious soiling, then it should be immediately cleaned
according to local policies. Many hospitals now ask staff to flag
specific pieces of equipment to show that they were appropriately
cleaned and/or decontaminated after use. This is especially impor-
tant for items such as commodes and other nondisposable appa-
ratus used for toileting and therefore at high risk of contamina-
tion. There are other utensils that might come into contact with
blood and/or body fluids, e.g., pulse oximeters, thermometers,
blood sugar test kits, saturation probes, etc., and these should also
be subjected to stringent cleaning and disinfection before and af-
ter use. Doctors’ stethoscopes have long been the subject of clean-
ing audits and remain a likely source of contamination for a range
of microbial flora (138). Wiping with alcohol is effective for de-
contaminating stethoscopes, but it appears that even this simple
procedure is abandoned, ignored, or forgotten when staff are
overworked. Indeed, all hygienic practices are consistently chal-
lenged on a busy ward (139).

A recent unannounced audit conducted on an acute-care ward
discovered various amounts of organic soil on many items of clin-
ical equipment (136). The authors used ATP bioluminescence to
measure soil and found that 84% of sampled items exceeded the
benchmark value provided by the device manufacturer. The audit
identified several items of equipment on the ward that lacked any
designated cleaning responsibility, and these tended to show
higher levels of contamination. The results are comparable with
data from a previous audit, which reported a pooled mean of
86.8% contamination of equipment, although this study used mi-
crobiological sampling methods rather than ATP biolumines-
cence (137).

In many hospitals nowadays, nurses have adopted or taken on a
range of duties originally performed by doctors, e.g., intravenous
line insertion, prescribing, and catheter manipulation. Given
these specialist tasks, it is understandable that basic cleaning has
been overlooked following the current shift in professional re-
sponsibilities (136, 140). Cleaning duties do not necessarily rep-
resent an appropriate use of time for highly trained nurses (141).
Housekeeping staff are expected to comply with policies that often
lack detailed guidance for each and every item found on a ward.
Furthermore, they are not usually trained to decontaminate elec-
trical items or clinical equipment (31, 122). Taking these changes
together, there is a risk that frequently used equipment and so-
called forgotten sites will accumulate soil, including opportunistic
pathogens. Since only a few spores of C. difficile or CFU of S.
aureus can initiate infection at a vulnerable site, persistent con-
tamination of soiled items provides a continued risk to patients
(Table 1) (2, 10). It is likely that numerous items of clinical equip-
ment in health care settings receive only sporadic cleaning atten-
tion or, perhaps, none at all. Cleaning and decontamination re-
sponsibilities for all staff, including medical staff, should be
regularly reviewed, along with appropriate and repeated training
programs (136, 140).

Terminal (Deep) Cleaning

Terminal or deep cleaning is performed following patient dis-
charge (122). If the patient was known to be colonized or infected
with a specific pathogen, then the cleaning regimen is usually aug-
mented with disinfectant at a specified strength depending upon

the pathogen. Methods vary, but a terminal clean usually includes
initial removal of all detachable objects from the room, including
bedding, screens, and/or curtains. Lighting and ventilation com-
ponents on the ceiling are dusted or wiped over, followed by cur-
tain rails and the upper surfaces of highly placed fixtures and fit-
tings. All other sites and surfaces are then cleaned downward to
floor level. Items and equipment removed from the room are
wiped over with detergent cloths, alcohol wipes, or disinfectant
before being replaced.

A terminal clean also implies removal of curtains, drapes, and
screens for laundering or cleaning; fixed blinds may be wiped over
in situ. While housekeeping staff are assigned to deliver terminal
cleaning of bed spaces and patient rooms, nurses, nursing auxil-
iaries, and clinical support workers usually have responsibility for
clinical equipment and electrical appliances, including beds. This
division of labor creates confusion over who cleans what, unless
clear contractual obligations are provided (136, 140). A flexible
approach in terms of responsibility between nurses and house-
keeping services must be adopted to ensure that patient care is not
compromised and that the environment and equipment are cor-
rectly cleaned without undue delay. At present, cleaned rooms and
bed spaces are routinely inspected by eye before admission in
United Kingdom and most state-run health care systems. Less
subjective methods of cleanliness assessment have yet to become
widely incorporated into routine monitoring of the health care
environment other than for research purposes (129).

Microfiber versus Cotton

Most hospitals prefer cotton-based cloths and mop heads for con-
tinued use, since these can be repeatedly washed at high temper-
atures (�90°C). There are many types of cleaning cloths, however,
with microfiber products now proving popular among cleaning
staff (142). Ultramicrofiber (UMF) cloths are made of a combina-
tion of polyamide and polyester, which absorb particles of soil
through static attraction. Dust and organisms become firmly at-
tached to the synthetic fibers and tend to persist within the cloth
throughout the cleaning process. A range of different types of
damp microfiber cloths were recently evaluated for their ability to
remove pathogens, including C. difficile spores, MRSA, and E. coli
(143). Single-use damp microfiber cloths demonstrated a mean
log10 reduction of 2.21 after cleaning, with smaller reductions ob-
tained after repeated use on a series of contaminated surfaces.

An in vitro study was performed to evaluate and compare reus-
able (rayon fiber) J-cloths against UMF cloths for eliminating
Acinetobacter spp., MRSA, K. oxytoca, and C. difficile spores from
hospital surfaces (144). UMF cloths were significantly better than
J-cloths for removing pathogens from tiles, new and used lami-
nated worktops, and stainless steel surfaces. These cloths generally
eradicated most, if not all, cultivable bacteria or C. difficile spores
from the surfaces tested, while standard J-cloths did not. This
included used laminate surfaces, which can provide hidden reser-
voirs for bacteria within surface microfissures (144). The results
differed from those of an earlier study using ordinary microfiber,
which reported less striking cleaning abilities depending upon
type of product tested (142). The authors attributed the divergent
results to dissimilar structures and lengths of fibers in the cloths
used in the two studies, but there were differences in study design
(144). The previous study used microbiological methods and ATP
bioluminescence to assess cleaning efficacy, whereas the later

Dancer

674 cmr.asm.org Clinical Microbiology Reviews

 on M
ay 4, 2018 by guest

http://cm
r.asm

.org/
D

ow
nloaded from

 

http://cmr.asm.org
http://cmr.asm.org/


UMF study tested surfaces using ATP bioluminescence only (142,
144).

In contrast, another study has showed that microfiber cloths are
only marginally more efficient for removal of soil and associated
microbes than cotton cloths in the presence of organic matter
(145). For surfaces without soil, no significant difference has been
found between cotton and microfiber cloths (142, 143, 145). Thus,
the final choice between traditional and microfiber cloths for
cleaning purposes rests with those with purchasing responsibili-
ties. It is hoped that these individuals take advice from staff who
actually perform the cleaning themselves. Microfiber products are
too expensive for single use, so continued use should be subjected
to a cost-benefit analysis. Furthermore, decontamination of the
cloths is required after cleaning, since pathogens, including
spores, may adhere to the synthetic fibers. Exposure to bleach and
other disinfectants potentially damages some microfiber products
and shortens their life span, so it is important to check manufac-
turers’ recommendations before purchase (146).

Contamination of Cleaning Equipment and Liquids

Comprehensive cleaning schedules are seriously compromised if
cleaning equipment or liquids are contaminated. Poor choice of
cleaning methods or products or inadequate maintenance of
equipment will result in environmental contamination of the very
surfaces that need attention. There are numerous examples of
cleaning cloths, including those made of microfiber, that merely
distribute organisms across surfaces instead of removing them
(26, 120, 142, 147–149). Enterococci, including VRE, seem to be
particularly difficult to eliminate from contaminated cloths (51,
147, 148).

Cleaning equipment is also vulnerable to contamination from
hospital pathogens and this encourages further dispersal through-
out the hospital environment (24, 82, 150, 151). Disinfectants are
supposedly better at killing environmental organisms than deter-
gent-based agents, but some pathogens are able to survive expo-
sure to specific biocides (152). Both multidrug-resistant S. marc-
escens and extremely drug-resistant strains of K. pneumoniae have
demonstrated increasing tolerance to chlorhexidine (153, 154).
Other cleaning fluids can become contaminated with Gram-neg-
ative bacilli during use, with some formulations apparently en-
couraging acquisition of resistance elements by Gram-negative
organisms (126, 155).

Microorganisms will exploit an inadequately cleaned niche to
exchange genetic material coding for antimicrobial resistance and
other survival mechanisms (156–158). This could include resis-
tance or tolerance to disinfectants. Once established, these hardy
strains may ultimately infect debilitated patients (157). Hospital
wastewater has been shown to harbor KPC-2-producing K. pneu-
moniae, suggesting widespread contamination throughout the
health care environment (159).

Benefits of Physically Removing Soil

While most hospitals would use disinfectants for cleaning rooms
or areas around colonized or infected patients, there have been a
number of recent papers that suggest that physical removal of
bioburden, rather than biocidal activity, is integral to the cleaning
process (160–164). This was first suggested over 50 years ago,
when it was shown that reduced surface contamination following
disinfectant exposure appeared to be due to the cleaning activity,
rather than the killing activity, of the products tested (165, 166).

Two studies published in 2012 found that norovirus (human and
MNV1 strains) could be substantially reduced on hard surfaces
after wiping from one to six times using a range of inocula and
material wipes (121, 149). This supports the increasingly popular
premise that physical removal could challenge routine use of dis-
infectants for controlling surface microbes (163, 164) (Fig. 2).
This may be related to the fact that the presence of organic soil on
a surface will impede the microbicidal activity of a disinfectant,
but this is not the only explanation. Frequent physical removal of
bioburden using detergent-based cleaning methods needs to be
compared and contrasted with application of biocides for cost
benefits as well as longer-term efficacy and environmental issues
(167).

There is no doubt that detergents are less toxic than powerful
disinfectants as well as less likely to encourage accumulation and
dispersal of tolerant or resistant genes among hospital strains
(167, 168). A study performed recently demonstrates the effect of
detergent-based cleaning over a 48-h period for high-risk hospital
surfaces (133). The study measured the total bioburden and pres-
ence of S. aureus, including MRSA, using standardized methods.
The results suggest that wiping over near-patient surfaces once a
day with single-use detergent wipes might be sufficient to protect
patients from environmental pathogen reservoirs in a nonout-
break situation. Disinfectant wipes add cost without necessarily
greater efficacy at pathogen removal (169).

AUTOMATED DECONTAMINATION DEVICES

Given increasing awareness of the role of cleaning, recent innova-
tions have tried to improve the scope and quality of cleaning prac-
tices in the health care environment (170). There is a continuing
risk of transmission from pathogens within residual bioburden if
surfaces remain uncleaned or receive inadequate cleaning. Carling
and coworkers applied a transparent gel to selected surfaces in
more than 1,000 patient rooms in 23 acute-care hospitals before
cleaning in order to assess the quality of housekeeping services.
The gel is easily cleaned, difficult to detect, stable, and nontoxic,
and it fluoresces when exposed to hand-held UV light (170). If UV

FIG 2 How should we clean clinical equipment? This figure shows data from
a study examining three different methods for cleaning a dental chair. Clean-
ing (wipe-rinse method) using a sodium lauryl sulfate-based detergent dem-
onstrated equivalence to use of a disposable barrier and bleach disinfection for
reducing MRSA contamination on a dental chair (164). (Photo courtesy of S.
Petti.)
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inspection detects persistent gel on a surface after cleaning, it is
assumed that the site did not receive sufficient cleaning attention.
The overall cleaning compliance following gel application was
only 49% (range, 35% to 81%), expressed as a percentage of eval-
uated surfaces. With this sort of information, it is not surprising
that several manufacturers are developing automated room disin-
fection units that demonstrate superior decontamination of envi-
ronmental objects and surfaces. These systems deliver various
microbicidal products, including germicidal light, hydrogen per-
oxide, steam, and ozone (171–175).

Automated technologies may offer enhanced decontamina-
tion, but they cannot replace routine daily cleaning. Organic soil,
liquids, waste, and litter must still be removed from floors and
surfaces before disinfectant agents are released. Furthermore,
these machines can usually be used only for terminal or discharge
cleaning because the products are either too toxic for patients
(e.g., hydrogen peroxide), constitute a safety risk (e.g., steam), or
are better suited to work in empty rooms (e.g., UV light).

Steam Cleaning

Steam vapor machines are rapidly effective against a wide range of
pathogens, notably VRE, MRSA, and Gram-negative bacilli, in-
cluding P. aeruginosa. Initial inocula of 7 log10 selected organisms
are reduced to undetectable levels in less than 5 s following expo-
sure to steam (176). The total surface bioburden from hospital
surfaces is decreased by more than 90%, along with almost com-
plete elimination of pathogens (177). While solid rubbish should
always be removed before this type of disinfection, steam can be
directly applied onto a wide variety of soft and hard surfaces with-
out prior cleaning (175).

Reports of the efficacy of steam cleaning are few in the literature,
but there are examples of benefit from using steam in both routine
and outbreak situations. An outbreak of norovirus occurred on
two wards at the same time in an Australian hospital (178). Two
different cleaning protocols were instituted for each ward: one
ward received detergent and bleach (1,000 ppm sodium hypo-
chlorite plus contact time of 10 min) as a sequential 2-step
method, and the other was provided with steam technology. The
steam component was applied using microfiber cloths and mops
for terminal cleaning. The advantages from using steam were
fewer cleaning hours, no toxic chemicals or dry-cleaning costs,
and 90% less water consumption. The end result was visually su-
perior, with clear support from cleaning staff. Microfiber-steam
technology also proved to be a highly effective method of decon-
tamination in an outbreak situation, with the same advantages as
reported for routine cleaning (161, 178).

Concern has been expressed over some aspects of the steam
technology for routine hospital cleaning (179). The use of steam to
decontaminate hand touch sites such as knobs, buttons, switches,
and computers, including those on electrical appliances, presents
obvious practical problems. If a hospital implements steam-based
cleaning in preference to other methods, there is a risk that these
high-risk sites might miss out on appropriate cleaning. It is also
the case that the temperature of steam at delivery may rapidly
dissipate depending upon the type and conductivity of exposed
surfaces. This has implications for the length of time that surface
organisms are exposed to applied steam. A previous study showed
that steam cleaning of curtains on a disused ward proved difficult
to implement because there was no indication which areas had

received sufficient steam exposure, and pathogens were recovered
before and after the process (125).

Ultimately, steam delivered to surfaces turns into water. Resid-
ual moisture constitutes a risk of slips and falls for patients, staff,
and visitors, although superheated steam is less likely to leave wa-
ter on exposed floors and other surfaces (179). Steam cleaning
presents further problems when cleaning a crowded ward, because
there may be difficulties gaining access to sites beside a bed-ridden
patient. There are also time pressures for busy wards, which com-
promise effective cleaning of a bed space if cleaners have only
minutes to deliver the service. In addition, carelessly handled
equipment represents a continued risk of burns and scalds for
both handlers and persons nearby, including patients. Inhalation
of the vapor could potentially aggravate breathing problems in
staff or patients with respiratory conditions (179).

Some hospitals have adopted a rolling program of steam clean-
ing commodes, beds (nonelectrical), and other furniture in non-
clinical areas. Steam also offers a useful cleaning strategy for public
toilets in hospitals and elsewhere. Steam systems should generally
be used only in well-ventilated areas, since repeated buildup of
condensate could influence the environmental bioburden as well
as damage the internal fabric. Depending upon the type of equip-
ment and surfaces selected, there remains a need for comprehen-
sive risk assessment of aerosolized pathogens from the vaporizing
process (179).

Ozone

Ozone is a potent oxidizing agent which has limited impact on
bacterial spores and fungi but is highly effective against vegetative
bacterial cells (180, 181). While it is relatively cheap to produce, it
is both toxic and potentially corrosive for metals and rubber de-
spite rapid dissociation into oxygen. There are consequently only
a few studies reporting its use in health care settings (171).

One recent study demonstrated benefit when ozone was incor-
porated into laundry decontamination. A hospital laundry system
using ozone resulted in a 5 log10 reduction of E. coli and total
coliform count present in rinse water (182). Two other studies
have reported that ozone has potential as a gaseous decontami-
nant for controlling environmental C. difficile, with various re-
sults. The first showed that C. difficile could be reduced by �4
log10 on various surfaces using a standard delivery of 25 ppm
ozone for 20 min at 90% relative humidity (183). The second
found that a 3 log10 reduction in C. difficile spores was obtained
following 25 ppm ozone for 75 min (184). In a domestic setting, an
estimated concentration of 12 ppm was needed to eradicate MRSA
from home surfaces (180). An earlier study used a gaseous ozone
generator for decontaminating hospital side rooms previously oc-
cupied by MRSA patients (174). Concentrations of 0.14 ppm were
achieved for different lengths of time, which failed to eradicate
environmental MRSA and also initiated respiratory symptoms
among exposed staff.

UV Light

UV irradiation has been investigated as a potential decontaminant
against environmental pathogens, including disinfection of sur-
faces, instruments, and air (185). UV light severs the molecular
bonds in DNA at specific wavelengths in order to exert its micro-
bicidal effect. UV-C light has a specific wavelength found between
200 and 270 nm (usually 254 nm), which itself falls within the
germicidal segment of the electromagnetic spectrum (200 to 320
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nm). Investigations of the effects of UV irradiation should con-
sider the interaction between several different parameters, nota-
bly, time of exposure, lamp position in relation to the irradiated
surface, barriers between the light source and target surface, in-
tensity of emitted light, and extent and flow of air movement.
These could all influence the overall effect of UV-C irradiation on
surfaces.

There have been several studies in the last few years examining
the effect of UV light as a potential decontamination strategy for
health care environments. Nerandzic et al. described the effects of
a fully automated UV-C system against hospital pathogens (186).
The device was tested in the laboratory and patient rooms and was
shown to significantly reduce C. difficile, VRE, and MRSA con-
tamination on frequently handled hospital surfaces. The same
group investigated a hand-held version delivering UV-C irradia-
tion (185 to 230 nm) against pathogens in the laboratory, in pa-
tient rooms, and on surfaces of items such as keyboards and por-
table medical equipment located outside patient rooms (187).
While the device significantly reduced C. difficile and MRSA, or-
ganic matter on hospital surfaces that were not manually cleaned
before irradiation clearly impeded the overall effect. This means
that routine cleaning practices should still be carried out, even if a
hospital chooses to implement routine decontamination using
UV technology.

Another study describes the decontamination effect of a porta-
ble pulsed UV light device and its impact on work load when
introduced into a hospital ward (188). Using pulsed UV for rou-
tine once-daily disinfection of ward surfaces halved the number of
housekeeping hours compared with the time taken for manual
disinfection using alcohol wipes. Other studies have shown that
UV-C systems can reduce vegetative bacteria by �3 to 4 log10

within 20 min after inoculation onto a carrier, although 35 to 100
min of irradiation is required to reduce C. difficile by �1.7 to 4
log10 (189, 190). When surfaces were not directly in line with the
UV light source, the systems were not quite as effective.

Some authors have stated that although UV light is microbici-
dal, it should not be used as a first-line intervention for decontam-
ination but should be considered for use as a supplementary strat-
egy depending upon specific needs, e.g., high or escalating HAI
rates (185). There are several factors to consider before imple-
menting routine UV-C technology; these include overall costs,
installation, hospital layout and design, integration into house-
keeping services, management of UV operation (including bulb
choice and longevity), and traditional cleaning and disinfection
practices. UV light is significantly less effective for sites around
corners or shielded by solid items that challenge penetration by
light rays. It may also damage plastics and polymers used in the
health care environment if repeatedly exposed. At this time, more
work is required to evaluate the costs versus benefits, safety, and
incremental advantages of UV devices for controlling health care-
associated infections.

HINS

High-intensity narrow-spectrum (HINS) light is another light-
based disinfection method that has shown wide-ranging microbi-
cidal activity (191). HINS light utilizes a narrow bandwidth of
high-intensity visible violet light with peak output at 405 nm. The
microbicidal mechanism is different from that of UV-C, in that
microbial inactivation is thought to be due to photoexcitation of
porphyrin molecules within bacterial cells. This encourages the

production of singlet oxygen as well as other highly reactive bac-
tericidal compounds (192). One study has evaluated the overall
effect of HINS light for decontaminating the clinical environment,
but further work is needed to investigate any benefits on HAI rates
from this technology (172).

Hydrogen Peroxide

Several systems which produce hydrogen peroxide (HP) in differ-
ent formulations (e.g., HP vapors and dry aerosols) have been
studied for their potential to decontaminate environmental ob-
jects and surfaces in hospital rooms. HP systems are effective
against M. tuberculosis, MRSA, viruses, sporeformers, VRE, and
multiresistant Gram-negative bacilli, including Acinetobacter spp.
(53, 73, 193–195). Using a before-and-after design, Boyce and
coworkers showed that introducing HP systems onto high-inci-
dence wards was associated with a significant decrease in rates of
CDI (196).

HP systems appear to offer reliable microbicidal activity against
most, if not all, hospital pathogens, but a number of problems
have been raised in association with these systems. Risks of acci-
dental exposure of people, animals, and plants continue, with re-
peated use of HP liable to encourage erosion of some plastic and
polymer surfaces or items used in health care environments (197).
Disinfection is impeded by residual debris, such as organic soil,
liquids, and waste, as well as surface properties, such as linen and
other soft materials. The equipment needs to be carefully posi-
tioned in order to facilitate optimal exposure, but this may com-
promise overstretched clinical staff. Without additional support,
there may not be sufficient time to coordinate such preparation or
perform it adequately.

Like UV-C systems, HP devices are universally expensive, can-
not be used in occupied rooms, and require trained operators.
They also need planned integration into decontamination and
housekeeping schedules. Effective HP disinfection may take sev-
eral hours to complete a full cycle, which contrasts with the time
taken for traditional discharge cleaning (197). Delivering HP de-
contamination may prove difficult in a hospital running at 100%
bed occupancy, since any restrictions in bed turnover time could
easily have an impact on admission capacity (197, 198). Rooms
cannot be easily closed in today’s crowded hospitals, let alone
multibed bays, complete wards, or specialist units offering 24-h
emergency care.

Pottage et al. compared MRSA resistance to HP against com-
mercially available spore indicators inoculated onto stainless steel
coupons (199). The recovery of MRSA from test coupons was
between 1.5 and 3.5 log10 higher than the quantity of Geobacillus
stearothermophilus spores recovered after exposure (P � 0.05).
The greater resilience displayed by MRSA may have been due to
production of catalase, which is presumed to break down HP,
leading to reduced efficacy. This highlights the fact that steriliza-
tion competencies achieved using standard biological indicators
cannot always be extrapolated to other organisms. Preliminary
cleaning of surfaces should always be performed to remove the
original bioburden, just as specified for UV light (171, 187).

Comparison between UV Light and Hydrogen Peroxide
Systems

HP and UV systems have inevitably drawn comparisons. UV-C
devices cannot eliminate bioburden on surfaces that are not di-
rectly in line with emitted light rays, but they do offer a faster
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decontamination cycle. This reduces the time period that the
room is unavailable for patient admission (200). HP and UV de-
vices decrease microbial contamination in patient rooms, with HP
vapor delivery apparently significantly better at removing bacte-
rial spores. These differences may be influenced by exposure time
and/or intensity of emissions for both systems and require further
clarification. Whether superior sporicidal activity is clinically im-
portant is unclear, since environmental screening has shown that
the quantity of spores is relatively low on surfaces near patients
with C. difficile infection. This is also true for VRE and MRSA.
There are two recent studies, however, that both report a reduc-
tion in C. difficile incidence among patients, the first after intro-
ducing a pulsed UV system into a community hospital and the
second after using pulsed UV in a large academic medical center
(201, 202). The latter paper also reported an overall decrease in the
number of patients acquiring multidrug-resistant organisms de-
spite missing a quarter of opportunities to apply the device after
patient discharge (202).

Innovative technologies offer an alternative strategy for envi-
ronmental hygiene purposes, but their logistical complexities,
aside from costs of equipment, training, management, and per-
sonnel, make it imperative that objective, controlled, and inde-
pendent studies be performed in order to establish overall costs
versus benefits (203). Furthermore, studies have hitherto concen-
trated on efficiency of surface disinfection without specifically ex-
amining the effects on airborne pathogens. Rapid disinfection cy-
cles may well sterilize hard surfaces without eliminating viable
organisms surviving in the air (41). Concern has been expressed
by several authors over the premature incorporation of these sys-
tems into routine decontamination schedules (171, 173, 197, 203,
204). Cost-effectiveness studies would help health care managers
choose the most appropriate system for their facilities based on
evidence rather than advertising (197).

ANTIMICROBIAL SURFACES

While regular and conscientious cleaning is a necessity for elimi-
nating pathogens, it is not the only mechanism for keeping sur-
faces free from microbes. There are some high-tech solutions cur-
rently receiving attention, including the so-called “self-sanitizing”
surfaces. The technology was first suggested in 1964, but given the
long-held view that hospital surfaces were not relevant for HAI
control, the potential use of antimicrobial surfaces has only just
begun to generate discussion (205, 206). It is possible that treating
or coating hospital surfaces liable to contamination by pathogens
could kill or inhibit microbes in order to disrupt transmission to
patients. Hard metals such as copper and silver have long been
investigated for their antimicrobial properties, and now novel
technologies such as light-activated titanium dioxide-containing
surfaces are attracting attention (207–209).

The development of effective antimicrobial surface coatings
could impinge on the risk of cyclical transmission of pathogens
between surfaces, hands, and air (206). These coatings might deter
the accumulation of microbial bioburden on a surface without
additional or increased frequency of cleaning and would therefore
contribute toward hygiene practices in the clinical environment.
Stopping a surface from functioning as a microbial reservoir ef-
fectively reduces the risk of onward transmission in health care
environments. The risk from person-to-person transmission re-
mains, but this may be tackled by barrier nursing and hand hy-
giene programs for staff, visitors, and patients. Self-sanitizing sur-

faces have the ability to supplement manual cleaning, which is
itself dependent upon operator time, choice, and ability and thus
subject to considerable variation (170, 210).

There are several types of antimicrobial surfaces. A compre-
hensive review of these surfaces has been written by Kristopher
Page and colleagues, from which the following classifications have
been extracted (206). Antimicrobial surfaces can be placed in two
main categories: first, antiadhesive coatings, and second, antimi-
crobial coatings and surface technologies. The latter category con-
tains examples such as bacteriophage-modified surfaces, polyca-
tionic surfaces, and light-activated coatings (206).

Antiadhesive Surfaces

One approach toward inhibiting microbial contamination is to
engineer a surface that prevents microbial adhesion to the device
or surface. This can be achieved by applying a layer of polyethylene
glycol (PEG) directly onto the surface (211). PEG-coated surfaces
create a hydrophilic interaction against hydrophobic bacterial
cells, which impedes microbial attachment. The dynamic proper-
ties of surface-bound PEG chains also make it more difficult for
microbes to become attached. Diamond-like carbon (DLC) films
similarly repel microbial adhesion and have been used as nontoxic
surface coatings for devices such as joint prostheses or stents
(212). Easy-clean surfaces are either exceptionally hydrophilic or
hydrophobic, with strongly hydrophobic coatings repelling bac-
teria to a much greater extent than glass controls or other com-
mercial coated glass products (213). Hydrophilic surfaces encour-
age water sheeting and ease of cleaning. Polymers can be
manufactured with zwitterionic head groups, which are also use-
ful for inhibiting bacterial adhesion and biofilm formation (214).
The zwitterionic head attracts a large amount of water and makes
the material hydrophilic. All these surfaces and easy-clean tech-
nologies are compromised in one respect, however, which is their
lack of inherent biocidal properties.

Antimicrobial Coatings

Triclosan. There is a wide range of antimicrobial coatings, some of
which are commercially available while others exist only at the
research stage. Currently available products either are based on
organic antimicrobials impregnated into a specific product, e.g.,
Microban (triclosan), or rely on inorganic antimicrobials such as
ionized silver (Ag�) or copper in different formulations (215).
Surfaces that utilize diffusible antimicrobials could potentially in-
duce microbial tolerance or even resistance, because the products
continually leach out active compounds into the environment
(206). With Microban products, the antimicrobial diffuses over
the surface to exert antimicrobial activity, making it nonperma-
nent. About 75% of antibacterial liquid soaps and 30% of bars also
use triclosan, which was used only in hospital settings until the
1990s. Widespread use may be linked with its presence in nasal
secretions of healthy people, where it appears to be associated with
S. aureus nasal colonization (216).

Much concern has been expressed over the development of
resistance to triclosan (217). It has been inferred that triclosan
encourages the production of poisonous dioxins following expo-
sure to UV light (218). Recently, the FDA (U.S. Food and Drug
Administration) announced a new position on antibacterial soap,
including those products containing triclosan (219). Manufactur-
ers must show both that their products are safe and that their use
is superior to simple washing with conventional soap and water,
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or they will have to remove them from sale before 2016. This
should also apply to impregnated surfaces. It is possible that the
costs of antibacterial products outweigh any potential benefits,
unless proved otherwise.

Silver. Both the Greeks and the Romans favored drinking ves-
sels made of silver to make water potable. It is thought that silver
ions (Ag�) bind to thiol (�SH) groups present in microbial en-
zymes and proteins, inactivation of which produces the desired
antimicrobial effect (208). However, Ag� coatings do not main-
tain permanent activity despite initial effectiveness. Bacteria can
become tolerant or even resistant to silver coatings or products
(220). They therefore rely on additional diffusible antimicrobials,
such as rifampin, to which microbes may also become resistant.
Silver has been incorporated into various products, including
coatings and textiles (221–223). Some coatings demonstrate good
antibacterial activity against planktonic Staphylococcus epidermi-
dis and A. baumannii and have been used to inhibit environmental
contamination as well as colonization of implanted medical cath-
eters and other devices (223).

Copper. Copper is also toxic to microbes, and there have been
several studies examining the antimicrobial effect of coating hos-
pital surfaces with copper (207, 224). There is no doubt that both
copper and copper alloy surfaces demonstrate a profound antimi-
crobial effect. There is even one study that attributes a reduced
rate of hospital-acquired infection to the installation of copper
coatings onto near-patient surfaces (45). The study itself reported
only some of the overall data, which detracted from the overall
conclusions, but it is clear that further research in this area is
warranted (225).

Bacteriophage-modified surfaces. There have been recent at-
tempts to apply bacteriophages to surfaces in order to control
bioburden (226). Antibiotic resistance capabilities do not neces-
sarily protect bacteria from attack by phages. Since only one phage
is required to infect a host cell in order to initiate multiple phage
production, this approach could represent an efficient way of dis-
infecting a surface. There are a number of complications, how-
ever, mainly due to the inherent specificity of a phage for a partic-
ular species of bacteria (206). While this forms the basis of
targeted in vivo therapy, it is less useful for open surfaces due to the
wide variety of dynamic bioburden, not necessarily bacterial. A
mixture of phages should be applied in order to increase the spec-
trum of activity, and this would exclude nonbacterial organisms as
well as rare or unusual pathogens. Furthermore, large or uneven
surface areas may impede the distribution of phage solutions and
deter them from reaching their appropriate bacterial target (226).

Phage stability in the environment and storage conditions also
represent important issues for study, as well as the potential for
phage resistance. Phage formulations and treated surfaces need to
be continually monitored and revised in order to remain effective,
which will complicate regulatory approval (206). Finally, the
phage concentration of a solution required for effective decon-
tamination should be carefully considered, along with the most
appropriate incubation time for a specific phage and target (226).

Polycationic antimicrobial surfaces. Surfaces treated with hy-
drophobic negatively charged polycations kill bacteria by causing
physical damage to the cellular envelope. Hydrophobic polymer
chain coatings attract bacteria toward the treated surface, result-
ing in puncture of the cell wall and subsequent cell death. Recent
examples of this type of surface coating include the polyethyl-
eneimines (PEIs) (227). While PEI coatings are thought to be per-

manently microbicidal, their longevity, biotolerance, and me-
chanical stability have not been widely investigated. There is no
information as to whether these coatings will be able to withstand
routine wear and tear in health care settings, including cleaning
practices and disinfectant exposure (206).

Light-activated antimicrobial surfaces. Another surface de-
contamination strategy is to use a coating that produces reactive
radicals. Biotoxic radicals, unlike antimicrobial agents, do not tar-
get a specific microorganism but exert nonselective effects toward
a range of microbes (228). This means that they avoid the poten-
tial problem of an organism developing resistance to a specific
treatment. There are two main types of coating that produce re-
active species and consequently display antimicrobial properties.
The first is based on a photosensitizer immobilized within a coat-
ing, and the second is a coating containing a titanium dioxide
(TiO2)-based catalyst (209, 229, 230). Both of these are classified
as light-activated antimicrobial agents.

Various modes of action have been investigated, specifically
the mechanism of photocatalysis and how this results in microbial
killing (206). The effectiveness of TiO2 as a photocatalyst is based
on the rate of production of hydroxyl radicals at the surface of the
semiconductor, although the energy of the light illuminating the
surface is also important. There have been some attempts to ex-
amine the performance of these coatings in health care environ-
ments. In one study, TiO2 efficacy in preventing MRSA contami-
nation in a clinical environment containing MRSA patients was
only 17.8% (231). The study did show, however, that environ-
mental contamination was higher for untreated surfaces (12.1%,
versus 4.4% for treated surfaces) and also higher for ad hoc sam-
ples taken from an environment exposed to MRSA as opposed to
a non-MRSA environment (14.1% versus 3.5%, respectively).
Disinfection of a surface by photocatalyzed reactions may be an
alternative and less toxic approach to using chemical disinfec-
tants, but it is important to be certain that these coatings demon-
strate long-term efficacy in working health care environments.

Current Concerns over Antimicrobial Surfaces

The utility of antimicrobial surfaces needs careful consideration
before widespread adoption (17, 232). Current evidence has
shown that these surfaces produce a moderate microbicidal effect
only (�2 log10 pathogen reduction), with no studies yet investi-
gating efficacy against pathogens such as C. difficile spores and
norovirus. The resources required for installation in health care
settings and overall cost-effectiveness are unknown. There is in-
sufficient information on durability and whether antimicrobial
activity is affected by humidity, temperature, cleaning frequency,
and/or the presence of an organic load (233). There are ongoing
concerns over possible toxicity, resistance, and allergenic proper-
ties (17, 218, 234). Finally, the relative contribution of self-disin-
fecting surfaces toward hand contamination and consequential
risk of cross-transmission has not been established (232). We do
not know which sites, surfaces, and clinical equipment in patient
areas should be, or could be, coated with an antimicrobial prod-
uct. It is true to say, however, that continued research on these
surfaces is needed and will no doubt attract much interest from
business and industry in the future. There has already been a call
for scientific standards for antimicrobial surfaces in view of the
rapidly expanding technologies and potential importance of these
products (235).
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HOW TO MEASURE CLEANLINESS

There are a number of scientific methods in use for measuring
environmental soil, since visual inspection cannot accurately de-
termine the infection risk for patients (129, 236, 237). The defini-
tion of “clean” requires a validated and risk-assessed strategy to
establish a state of “cleanliness,” rather than the subjective assess-
ment currently provided by visual inspection and clipboards
(129). Microbiological and chemical (ATP bioluminescence)
techniques have long been incorporated into a comprehensive
assessment framework utilized by the food industry, and these
techniques are now being tested in hospitals (17, 42, 236–239).
Measurements from these methods have furnished a range of tan-
gible values that can be modeled against the infection risk for
patients over time. Collecting data using microbiological and
chemical tools provides an opportunity to choose an appropriate
benchmark for routine surface monitoring. This benchmark
should signify whether hospital cleanliness levels indicate a clini-
cal infection risk or not (42, 240). Health care staff, including
housekeepers, would welcome an evidence-based cleanliness
standard, thus allowing them to review, change, or target cleaning
practices before an outbreak becomes inevitable (1). Managers
would benefit from established benchmarks, since they would be
able to audit, monitor, and defend practices in both routine and
outbreak situations.

Microbiological Methods

Current microbiological standards include an overall aerobic col-
ony count and specific pathogen count for defined surface areas
health care environments (129). Aerobic colony counts of �2.5 to
5 CFU per cm2 on hand touch sites and �1 CFU/cm2 hospital
pathogen (e.g., MRSA, VRE, C. difficile, etc.) have been proposed
and tested as microbiological benchmarks (42, 43, 236–238, 241).
The two benchmarks appear to be related, in that higher levels of
aerobic colonies on hand touch sites are more likely to be associ-
ated with the presence of S. aureus and MRSA (237). The stan-
dards have been used to systematically measure soil in several
hospital studies but have not yet been validated for routine mon-
itoring (42, 133, 242, 243).

Similar counts for food preparation surfaces form the basis of
the monitoring framework set up by the food industry (129, 132).
Retail and food manufacturers, plus a variety of other agencies,
use microbiological standards based on the presence or absence of
indicator organisms, identification of which alerts the agency to a
potential health risk from the medium monitored (132, 244, 245).
These standards also incorporate overall counts of nonpathogenic
flora, because the organisms of interest are widely spread through-
out time and space (129). The most reliable indicator of environ-
mental hygiene in health care premises is the presence of coagu-
lase-positive staphylococci, because ubiquitous human carriage
and frequent human traffic encourage risk of contamination.
Studies investigating the application of microbiological standards
in health care environments have selected both S. aureus and
MRSA to help monitor cleanliness (1, 2, 42, 43, 241, 246).

ATP Bioluminescence Systems

ATP bioluminescence systems are provided with various bench-
marks depending upon make and model of luminometer and the
environment to be monitored. The benchmark levels range from
25 to 500 relative light units (RLU) for 10- to 100-cm2 health care
surfaces (238, 241, 247). Studies have suggested that some systems

are not sufficiently sensitive to detect very low microbial counts
(�10 CFU/cm2), which is of concern given the low numbers of
pathogens required to initiate infection (Table 1) (248, 249).
Other studies have investigated possible associations between
ATP and microbiological data by systematically measuring both
data sets from the same surfaces. One study found that benchmark
categories of 100 RLU and microbial growth of �2.5 CFU/cm2

were only loosely related, since approximately 60% of combined
data sets agreed as to whether a surface should pass or fail (241).
Another examined colony counts and ATP values independently
against cleaning performance using fluorescent markers (250).
The data presented suggest that ATP monitoring is more useful
for detecting the need for cleaning attention, whereas microbio-
logical screening provides an indication of the quality of cleaning
(250). It is clear that more studies are required in order to establish
the best method for monitoring hospital surfaces in the routine
situation (249, 251).

ATP measurements can be hugely inflated by disinfectants, mi-
crofiber products, food and drink spillages, and synthetic plastics
used in cleaning and laundry services (236, 251, 252). Chosen
benchmarks should reflect the risk of infection for different types
of patients accommodated in different clinical areas. Sites and
surfaces in outpatient clinics, hospital corridors, and storage areas
do not necessarily provide the same level of infection risk as sur-
faces in a bone marrow transplant unit or hand touch sites beside
an ICU patient. After these benchmarks have been established,
routine monitoring should be able to highlight problem areas or
trends illustrating the dynamic balance between hospital cleanli-
ness, staff deficit, and workload. Most importantly, awareness of a
sudden accumulation of soil might initiate extra cleaning before
patients are exposed to a risk of infection or even an outbreak (42,
238, 240). As previously stated, several studies have already shown
the association between bioburden on health care surfaces and
HAI rates, whether due to overall HAI or specific pathogens (42,
43, 45, 63, 74, 253).

HOW TO MEASURE CLEANING

Fluorescent Markers

There are alternative ways of assessing the health care environ-
ment, notably monitoring the efforts of cleaning staff rather than
measuring residual bioburden on surfaces. Most environmental
failures are likely due to personnel themselves, not products or
practices (254). Assessment of the cleaning process can be intro-
duced by using educational strategies, direct and indirect cleaning
inspections, observation, scientific monitoring, and feedback to
staff (17, 58, 170, 247, 255). Any form of environmental monitor-
ing is quickly noticed by housekeeping staff, although the effect
can wear off without continued feedback or education (17). Inoc-
ulation of key sites using invisible fluorescent markers for later
inspection virtually always improves overall cleaning compliance,
with a reduced prevalence of hospital pathogens (255–257). How-
ever, cleaners become aware of this type of monitoring, search out
fluorescent marks, and then target these for cleaning to the detri-
ment of other sites and surfaces (258). Although more research is
needed, a few studies have indicated that the use of fluorescent
markers is linked with decreased transmission of hospital patho-
gens (51, 259).
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ATP Bioluminescence Systems

Tangible values and trends over time from bioluminescence-
based ATP data have the advantage of immediate and potentially
longer-term feedback for housekeeping staff (260). The use of
ATP monitoring appears to have a pronounced effect on cleaners,
especially when they receive educational programs at the same
time (247). Similar to the case for fluorescent marking, house-
keeping staff react quickly to an environmental monitoring pro-
gram because they are concerned that their jobs may be at risk
(17, 58).

Observation, Supervision, and Education of Housekeeping
Staff

Several other studies have demonstrated different results after in-
stituting direct observation, supervision, and education of staff as
they clean, again often showing reductions of important hospital
pathogens (257, 261–264). There is a concern that these interven-
tions might lose impact over time, since cleaning is physically
demanding, poorly paid, and subject to inadequate staffing (17,
265). Furthermore, there tends to be rapid turnover among jani-
torial and housekeeping staff, and this may be related to higher
sickness levels as well as dissatisfaction with pay, status, and con-
ditions (17).

Ongoing training, education, and continual evidence-based re-
assessment are required as an important part of staff management.
It is hoped that the overall status of housekeeping staff improves in
parallel with the recognition of the importance of basic cleaning in
health care environments. Specialized cleaning activities can be
agreed to and implemented for staff who wish to assume greater
responsibility and are prepared to undergo relevant training and
assessment. Selected housekeeping staff could potentially manage
the decontamination of clinical equipment, traditionally the remit
of clinical staff, thus releasing more time for the latter to care for
patients. Perhaps the creation of a new training framework for
different levels and competencies of cleaning staff would help raise
the status of cleaners, as well as focus attention on the cleaning
resources required to keep health care environments safe for pa-
tients.

DISCUSSION

There is no easy way to clean a hospital or to keep it clean, however
we define “clean.” Removing visual and invisible dirt from the
hospitals of today and for the future requires sufficient trained
staff, ongoing monitoring, measurement of bioburden, educa-
tion, constant upgrading of practice, and two-way communica-
tion between those responsible for cleaning and those responsible
for infection control. The risks of cross-transmission are exagger-
ated by heavy workload, understaffing, high bed occupancy rates,
and rapid bed turnover (266). Poor ventilation, clutter, and inap-
propriate storage further compound the ability to clean surfaces
properly and keep them clean (24). Furthermore, in an era of cost
cutting, those with cleaning responsibilities cannot hope to de-
contaminate all high-risk surfaces as often as required when a
hospital is full to capacity and patients with attendant microor-
ganisms are transferred between wards (and hospitals) day and
night (17, 267).

Current Unanswered Questions

While most would agree that keeping hospitals “clean” and prior-
itizing surface cleaning around the patient are of paramount im-

portance, there are several key questions to which we do not yet
know the correct answers. These can be listed as follows. (i) How
important is the choice of cleaning fluid, whether detergent
and/or disinfectant? (ii) How much better is microfiber than tra-
ditional cloths? (iii) When should we use bleach, and when should
we not? (iv) When should we consider the use of automated sys-
tems? (v) How should we monitor cleaning? (vi) How should we
monitor cleanliness? (vii) Are current specifications targeting the
most contaminated sites? (viii) How often should we clean an
occupied room or bed space?

The debate over detergent- or disinfectant-based cleaning in the
routine situation continues to rage unabated. Ignorance about the
effects, short and long term, of cleaning agents persuades manag-
ers to choose powerful kill-all fluids or gases for their hospital as
protection against pathogens and lawsuits. Microbiologists and
environmentalists argue that the removal of dirt should be
achieved without resorting to expensive toxic agents, which may
themselves encourage the appearance and persistence of resistant
pathogens in habitually exposed environments. Regarding the
proliferation of automated dispersal systems for decontamination
of surfaces, there may be unintended consequences of such new
technologies, quite apart from the expense involved in introduc-
ing them. Advertising and marketing are much less costly than
research.

The fact that physical removal may be just as good at removing
soil as disinfectants is supported by several recent studies and em-
phasizes the need for more work in order to avoid environmental
and human toxicity from potent disinfectants (160–164) (Fig. 2).
A recent study suggests that the effect of detergent cleaning on
surface S. aureus and MRSA lasts longer than the effect seen after
disinfectant exposure (268) (Fig. 3). Aside from this, first-line use
of detergents for routine cleaning saves money as well as negating
any risks from tolerance or resistance among pathogens due to
disinfectants (197). Hospitals in the United Kingdom routinely
use detergent-based cleaning for general surfaces and do not seem
to experience the same levels of MDR Acinetobacter and VRE as
reported by disinfectant-using hospitals in other countries (3, 19,

FIG 3 Effect of detergent and disinfectant cleaning on total Staphylococcus
aureus (methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S.
aureus [MRSA]) recovered from hand touch sites on a 30-bed ward over 48 h.
This figure shows the effects of detergent (blue line) and disinfectant (red line)
on surface S. aureus and MRSA from baseline levels over 48 h on a 30-bed acute
ward. Both types of cleaning rapidly reduced the overall staphylococcal bur-
den, but recontamination occurred more rapidly after disinfectant exposure.
The sites monitored were bedside locker, bed frame, and overbed table, and
each 48-h period for each type of cleaning was repeated three times (276).
(Adapted from reference 268.)
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73, 80, 269). It is true to say that cleaning is not the same as disin-
fection, although the two terms are habitually interchanged (270).

There appears to be a link between HAI rates and environmen-
tal bioburden, although as yet only a few studies have reported this
and even fewer have investigated it (42, 43, 45, 63, 74, 253). More
work on this relationship is urgently required, since a measurable
association offers tangible proof for the role of the environment in
HAI risk. It also justifies the setting of scientific standards for
measuring microbial soil in order to gauge the cleaning effect and
infection risk for patients.

Current cleaning specifications may not be targeting the correct
sites, or, if they are, they may not be applied frequently enough.
Cleaning and disinfection should be focused on routine decon-
tamination of high-risk surfaces, i.e., the sites more likely to har-
bor pathogens and thus facilitating transmission (43, 237, 239).
Removing pathogens from handles, switches, buttons, knobs, and
other frequently touched (and often forgotten) sites is more likely
to have an impact on patient transmission than cleaning inacces-
sible surfaces such as high shelves, ledges, or ceilings or low-touch
surfaces such as walls and window panes (130). Thoughtful con-
struction of a specification to prioritize the highest-risk sites
should also obviate the confusion over who cleans what and how
often an item or surface should be cleaned (133, 136, 140, 271). In
particular, there is currently no evidence to support the frequency
of cleaning a room or bed space while it is occupied by a patient
(133, 135). Cleaning specifications should encompass the fact that
overall cleaning quality is determined not only by the applied
method but also by the appropriateness of the method for the type
of surface treated.

CONCLUSION

The importance of clean hospitals has not been widely accepted as
a key component in infection control despite the increasing inter-
est in HAI during the latter part of the 20th century (24, 27, 272,
273). Now it is finally receiving the attention it deserves (259, 274).
No doubt there will be much more evidence forthcoming over the
next few years to support and justify hospital cleaning practices.
This is to be welcomed, since it is quite possible that accumulating
data on environmental reservoirs and pathogen transmission in
health care environments will also benefit healthy people in their
homes and the community at large (275). Furthermore, with the
advance of antimicrobial resistance increasing for virtually all
pathogens, the science underpinning infection control, including
cleaning, will attain a status hitherto unrecognized. Preventing the
transmission of pathogens will be the main focus of the 21st cen-
tury unless we rapidly find alternative methods for treating infec-
tion other than antimicrobial chemotherapy (274).
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