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Dialysis Disequilibrium Syndrome
Revisited

An aggressive dialysis in a grossly azotemic patient, es-
pecially one with severe metabolic acidosis, can lead to

dialysis disequilibrium syndrome (DDS). Mild forms present
as nausea, vomiting, restlessness, and headache. Severe mani-
festations include seizures, obtundation, coma, and even death.

This clinical picture is caused by cerebral edema induced
by one or more of the following mechanisms:

1. “Reverse urea effect” – Dialysis removes urea faster from
the blood than from the brain; consequently, water enters
the brain.

2. “Cerebrospinal fluid acidosis” – Correction of systemic
acidosis engenders the condition due to a lowering of
brain pH.

3. “Idiogenic osmoles” – As a response to blood hyper-
osmolar state, osmoles are produced in the brain. As blood
osmolality decreases under relatively quick dialysis,
idiogenic osmoles tend to induce brain edema.

Because the symptoms of DDS can be life-threatening,
preventive measures in patients with severe uremia are im-
portant. The first strategy relies on raising blood osmolality
by introducing solutes (osmoles) into the blood. The second
approach, which is the most common, decreases the efficiency
of the dialysis treatment by shortening the duration of a di-
alysis run to 25% – 30% of normal, by lowering dialyzer blood
flow or dialysate flow rate, by using a less efficient dialyzer,
or by a combination of these maneuvers. Dialysis frequency
is increased instead. Anticonvulsant drugs are needed in cases
where the preventive measures have not been used or have
been unsuccessful.

(Hemodial Int., Vol. 5, 92–96, 2001)
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Introduction

A precipitous fall in blood urea concentration in a grossly
azotemic [for example, blood urea level above 60 mmol/L

(360 mg/dL)] patient by aggressive dialysis can produce a
constellation of neurologic and systemic manifestations col-
lectively known as the dialysis disequilibrium syndrome
(DDS). The syndrome can occur during or soon after a dia-
lytic procedure (especially in new dialysis patients), but it
can also appear within the 24 hours subsequent to comple-
tion of a dialysis session [1,2]. Mild manifestations include
anorexia, nausea, vomiting, disorientation, restlessness,
muscle cramps, blurred vision, dizziness, asterixis, and head-
ache. Severe manifestations include confusion, seizures,
obtundation, coma, and even death [3,4].

The syndrome is particularly common among children and
among neurologic patients, such as those suffering from pre-
existing seizure disorders or brain trauma [5]. The higher in-
cidence in the pediatric population is related in part to the use
of dialyzers with a disproportionately high mass transfer area
coefficient relative to the child’s body size or to the use of a
high blood flow rate or a high dialysate flow rate, or both [6].
With regard to neurologic patients, it is possible that insult is
being added to injury. Other predisposing factors include older
age and severe metabolic acidosis [7]. Finally, it should be
noted that DDS is uncommon among peritoneal dialysis pa-
tients because of the relatively slower removal of waste prod-
ucts from the body as compared with that in hemodialysis
patients [8].

To better understand DDS, a general review of the physi-
ology of the blood–brain barrier is in order.

The blood–brain barrier and reflection coefficients

The blood–brain barrier is a concept that depicts the kinetic as-
pects of the passage of substances out of the blood into the brain
[9]. The general idea of a restriction on the passage of a dis-
solved substance out of the blood into the brain dates from the
studies of Ehrlich [10]. This investigator observed that, whereas
many dyes, after intravenous injection, stained nearly every part
of the body, the brain was often spared this universal staining.

Urea, by virtue of its physical properties (non polar, non
ionized, and water soluble), can traverse most cellular mem-
branes. As a result, at steady state, most body fluids exhibit
similar urea concentrations, with the exception of fluids within
the ocular and cerebrospinal spaces [11]. In these latter flu-
ids, the steady-state concentration of urea has been found to
be lower than that in the blood [12,13]. In the brain, on the
other hand, the steady-state level of urea has been demon-
strated to be higher than that in the blood [11].
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The permeability kinetics of any solute across the blood–
brain barrier, which in turn governs that solute’s steady-state
concentration, can be studied by measuring the osmotic pres-
sure that the particular solute generates across the blood–brain
barrier [14]. The osmotic pressure thus determined can be
expressed as a ratio between itself and the ideal osmotic pres-
sure. This ratio is known as the reflection coefficient. Reflec-
tion coefficient values range from 0 to 1, with a value of 1
signifying complete impermeability. The reflection coefficient
of 0.44 – 0.59 for urea (versus, for example, 0.9 for the im-
permeable mannitol) implies that this waste product has a lim-
ited ability to cross the blood–brain barrier. Precisely because
of this limited ability, a lag exists not only in the entry of urea
from the blood into the brain or into the cerebrospinal fluid
(CSF), but also in the reverse process—namely, the exit of
urea into the blood from the brain and from the CSF [13,
15,16].

The reverse urea effect

The inherent delay in urea entry into the brain, coupled with
the faster movement of water in the opposite direction (the
permeability surface area product for water being 0.65 –
1.75 mL/g/min [17] and that for urea being 5×10–3 mL/g/min
[18]), means that urea can function as a temporary effective
osmole [14]. Thus, rapid intravenous infusions of urea have
been successfully employed to dehydrate nerve and ocular
tissues in patients with cerebral, spinal cord, and intra-ocular
lesions [16]. This therapeutic effect can be called the “urea
effect”.

Conversely, when urea is removed from the blood after
equilibration between the blood and the brain has been
achieved, the lag in the exit of urea from the brain into the
blood can draw water into the brain, thus engendering cere-
bral edema. This process has been termed the “reverse urea
effect” [19]. It is noteworthy that the lag in urea exit from the
brain may be magnified in patients with renal failure [20].

Kennedy et al. [19] were the first to suggest, in 1962, that
DDS is related to the “reverse urea effect”. The syndrome
was attributed to the delayed exit of urea from the brain in the
face of a rapid dialysis-induced decline in blood urea level,
thus creating an osmotic gradient that favored the shift of water
into the brain from the blood. The researchers based their
assertions on the following observation: In patients with di-
alysis disequilibrium, in common with other azotemic patients,
the pre-dialysis levels of urea in the CSF were found to be
only slightly lower than those found in the blood. At the end
of dialysis, however, the blood urea levels were greatly re-
duced, while the CSF urea values were only slightly depressed.
The group’s assertions are in keeping with the lag in urea
removal from the CSF and from the brain in the face of an
abrupt fall in blood urea concentration [16].

Subsequently, Walters et al. [21] were able to show that
patients with the highest pre-dialysis blood urea concentra-
tion and the greatest absolute reductions in urea had more
cerebral edema than those with a lower pre-dialysis urea value

and a lesser absolute urea reduction. Moreover, Hu and col-
leagues [22] found that the delay in urea exit from the brain
(due to the low permeability of urea) is aggravated by a great
loss (30% reduction in mRNA expression) of urea transport-
ers, agents that normally facilitate urea transport out of brain
cells. Lastly, Galons et al. [23] discovered that, in uremic rats
as compared with controls, hemodialysis could promote a
faster movement of water into the brain.

Thus, the combination of a renal failure–related reduc-
tion in urea exit from the brain and a dialysis-induced aug-
mentation in water entry into the brain can contribute to the
generation of cerebral edema.

Evidence for cerebral edema

With respect to cerebral edema, La Greca et al. [24] applied
computed tomography to images acquired before and after
hemodialysis and found a decrease in parenchymal density,
suggesting a relative increase in the hydration of the brain. It
has also been shown that, after a conventional hemodialysis
treatment, an average increase in cerebral volume of 3% could
be detected by magnetic resonance imaging [21].

Additional clinical and experimental data lending support
to the presence of cerebral edema have also been forthcom-
ing. For example, an exposed brain flap in a patient was found
to swell during the course of a dialysis run [25]. In rapidly
dialyzed dogs, brain water content was noted to rise with di-
alysis [26]. Similarly, Silver et al. [13] discovered that rapid
dialysis could raise brain water by approximately 6% in
nephrectomized rats. Differences in the urea concentration
between brain and blood (high brain-to-blood ratio) were in-
criminated in these changes in brain water content [21].

Elevated intracranial pressure

That cerebral edema is associated with increases in intracra-
nial pressure (ICP) is well described. Thus, measuring ICP
can help to detect the presence of cerebral edema. In this re-
spect, a hemodialysis-induced elevation in ICP was observed
in a patient harboring an acoustic neurinoma; ICP returned to
baseline after completion of the dialysis treatment [27]. In a
related study [28], neurosurgical patients suffering from acute
renal failure and undergoing hemodialysis treatments were
observed by continuous ICP monitoring. An increase in ICP
was seen only during dialysis; a similar rise was not noted in
the interdialytic interval. Furthermore, by performing studies
in uremic dogs and uremic human patients, Sitprija and
Holmes [29] were able to conclude that hemodialysis could,
respectively, raise the intracranial pressure in dogs and the
intra-ocular pressure in humans (changes in intra-ocular pres-
sure are known to correlate with those in ICP).

More recently, in 1990, Davenport et al. [30] measured
ICP in patients who were suffering from acute oliguric renal
failure in association with hepatic encephalopathy, and who
were treated with either intermittent or continuous hemo-
filtration. During the first hour of treatment in patients treated
with intermittent hemofiltration, a reduction in plasma osmo-
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lality was accompanied by a rise in ICP. Corresponding
changes were not seen in patients treated with continuous
hemofiltration. The investigators asserted that, in the case of
intermittent hemofiltration, a rapid fall in plasma osmolality
was responsible for water movement into the brain, produc-
ing cerebral edema.

In patients suffering from DDS, serial electroencephalo-
grams have revealed characteristic rhythmic delta-wave ab-
normalities that are consistent with a rise in ICP [31]. These
characteristic waves are believed to be a hallmark of cerebral
edema. Avoiding marked falls in plasma osmolality during
dialysis can attenuate or abolish these abnormal waves [32].

“Idiogenic osmoles” theory

Idiogenic osmoles are organic osmoles (or osmolytes) pro-
duced by the brain to counteract various hyper-osmolal states
so that brain shrinkage does not occur [33]. The idiogenic
osmoles theory was originally advanced to explain DDS be-
cause, in initial studies, the brain urea level was found to be
less than that required to produce the degree of cerebral edema
seen under experimental conditions [34]. Subsequently, how-
ever, Silver et al. [14] demonstrated that, if the brains of ex-
perimental rats were frozen solid promptly after death, the
expected urea gradient between the brain and the blood could
be demonstrated. Additionally, no increase in commonly ob-
served idiogenic osmoles has been observed during experi-
mental hemodialysis [34,35]. Because of these findings, the
idiogenic osmole theory has lost some of its appeal.

“Cerebrospinal fluid acidosis” theory

It has been suggested that the pH of the CSF falls during hemo-
dialysis [36]. Acidosis of the CSF ordinarily occurs when-
ever systemic metabolic acidosis is rapidly rectified by alkali
therapy [37]. During hemodialysis, existing systemic meta-
bolic acidosis (if any) is promptly corrected, but the corre-
sponding CSF pH level remains low. The low CSF pH may
be due to the failure of the higher plasma bicarbonate to enter
the CSF (whereas increased plasma CO2 diffuses rapidly to
the CSF, increasing its pCO2) or to the production of an un-
identified organic acid by the brain during dialysis [7]. The
CSF and brain acidosis somehow brings about edema of the
brain. However, studies lending support to this particular
theory are few.

Given the present state of our knowledge, the “reverse
urea effect” theory appears the most promising, but neither
the idiogenic osmoles theory, nor the CSF acidosis theory
can be entirely ruled out.

Management

Prophylactic measures are important in the management of
DDS:

1. Solutes (osmoles) are introduced into the blood directly
or via the dialysate to raise blood osmolality and to pre-
vent the entry of water into the brain.

This approach is often employed because the most
promising theory regarding the cause of DDS is based on
the “reverse urea effect” [19,32]. For example, if a dialy-
sate is enriched with urea in a concentration approximat-
ing that in the blood, no appreciable gradient for urea
transfer will exist between the brain and the blood. As a
consequence, urea will not be lost from the body, the “re-
verse urea effect” will not take place, and DDS should
not materialize [32,38,39].

A recent testimonial to the success of this approach
was demonstrated clinically by Doorenbos et al. [40].
Those authors used hemodialysis to treat lactic acidosis
and renal failure in a metformin-intoxicated diabetic pa-
tient. After 7 hours of dialysis, the blood urea level fell to
10.4 mmol/L (62 mg/dL) from 28.8 mmol/L (172 mg/dL),
and the patient promptly developed symptoms of DDS.
However, during two subsequent 6-hour dialysis runs, the
patient’s blood urea concentration was kept constant by
enriching the acid concentrate with a 4.4 molar urea solu-
tion, in an effort to produce a final dialysate urea concen-
tration approximating that of blood. During the course of
the urea-enriched dialysis regimen, the patient was free
from manifestations of DDS. The addition of urea to the
dialysate enabled the patient to undergo a prolonged di-
alysis treatment administered to remove metformin from
the body and to rectify the lactic acidosis without suc-
cumbing to DDS.

With regard to the concentration of urea in a urea-
enriched dialysate, having exactly the same level as that
found in the blood is not necessary. One can use a lower
dialysate urea value (for example, 10% or so lower), so
that, over a series of dialysis treatments, blood urea level
can be reduced in a stepwise manner, with less risk of
developing DDS.

2. Too-rapid removal of waste products by hemodialysis is
prevented.

To prevent the development of DDS in the event that
dialysis is required in a patient with an inordinately el-
evated blood urea value [for example, 80 mmol/L
(480 mg/dL)], an inefficient dialysis treatment can be fash-
ioned by shortening the duration of the dialysis run to
25% or so of normal, by lowering dialyzer blood flow or
dialysate flow rates, by using a less efficient dialyzer, or
by a combination of those maneuvers. If no untoward ef-
fects appear, then, in a stepwise manner, the efficacy of
the dialysis treatment can be raised in subsequent dialysis
runs until conventional dialysis treatments can be safely
offered. By employing less efficient, more frequent di-
alysis treatments, the biochemical abnormalities associ-
ated with uremia are corrected in a more gradual manner,
thus reducing the incidence of DDS [41–45].

It follows, therefore, that daily dialysis treatments or
slow continuous therapies such as continuous
hemofiltration or hemodiafiltration are ideally suited for
the prevention of DDS. These modalities are successful
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because they avoid marked reductions in blood waste-
product levels, minimize changes in intracranial pressure,
and, hence, reduce the risk for the development of cere-
bral edema [30,46].

In clinical situations in which aggressive dialytic
therapy is mandated, exogenously administered solutes
such as urea, glycerol, mannitol, or sodium chloride can
be used to counteract the urea-lowering effect of the
therapy [47–54] (although the use of sodium chloride is
controversial [55]). However, in clinical practice nowa-
days, because most patients are seen relatively early in
the course of their disease, when their blood urea levels
are not inordinately elevated, the initial management regi-
men of frequent, ineffective dialysis treatments is often
adequate. The introduction of exogenous solutes into the
blood to counteract the urea-lowering effect of dialysis is
seldom required.

3. Anticonvulsant agents [47] are used.
Anticonvulsant drugs have been used both to prevent

and to treat DDS. In general, this therapy may not be the
best approach. Because the pathophysiology of DDS is
related to the development of brain edema, anticonvul-
sant therapy only lessens the incidence and duration of
seizure disorders; it does not affect the underlying cause.
Nevertheless, administration of anticonvulsant agents may
be desirable at times, and some agents are more effective
than others.

Seizures can be managed by intravenous diazepam
therapy with effects commonly lasting between 30 min-
utes and 1 hour. When compared to barbiturates, diaz-
epam causes less respiratory depression. It cannot be
overemphasized that, although diazepam and related
drugs are metabolized by the liver, great care should be
exercised in their use. Many renal failure patients, espe-
cially the elderly, cannot tolerate the dosages ordinarily
recommended for patients with normal liver and renal
functions.
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